2014-2015 COMPUTER SCIENCE ENGINEERING

ACADEMIC YEAR 2014-2015

S1S2 CSE (2014 Batch)

13.101	Engineering Mathematics I	Ambily
13.102	Engineering physics	Rajesh
08.103	Engineering Chemistry	Renju
13.104	Engineering graphics	K S Sasi
13.105	Engineering Mechanics	Anwar Rajeev
13.106	Basic Civil Engineering	Allzi Abraham
13.107	Basic Mechanical Engineering	Vivek K S
13.108	Basic Electrical & Electronics Engineering	Bijily
13.109	Foundations of Computing and Programming in C	Dhanunath R
13.110	Mechanical Engineering workshop	VK Soman
13.111	Electrical & Electronics Engineering Workshop	Pallavi Vijayan

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
110.		On completion of course the students will be able to:
1	This course provides students an insight into the various applications of differentiation, partial differentiation techniques	At the end of the course, the students will be familiar with various concepts of calculus which are essential for engineering.
2	The methods for solving differential equations and the concept of linear algebra are also introduced as a part of this course.	They'll also become acquainted with the basic ideas of Laplace transforms and linear algebra
3	This course provides students an insight into the various applications of multiple integrals	
4	This course provides students an insight into the various applications of Laplace transforms.	

13.101 ENGINEERING MATHEMATICS I

Sl.	Course Objectives	Subject Learning Outcomes or
NT		Course Outcomes
No.		On completion of course the students will
		be able to:
1	Dynamics of mechanical and	Solve for the solutions and describe the
	electrical oscillation using Fourier	behavior of a damped and driven
	series and integrals; time and	harmonic oscillator in both time and
	frequency representations for driven damped oscillators,	frequency domains. Damped and Forced Oscillations oscillating system problems.
	resonance; one-dimensional waves	Oscinations oscinating system problems.
	in classical mechanics and	
	electromagnetism; normal modes.	
2		Define and explain the propagation of
	photonics that complement the	light in conducting and non-conducting
	topics in the optics and laser	media.
	courses and to help students develop problem-solving skills	
	develop problem-solving skills applicable to real-world photonics	
	problems.	
	Providing.	
	This course equip the students to	Define and explain the physics governing
	assimilate engineering and	laser behaviour and light matter
	technology through the exposure of	interaction ting and non-conducting
	fundamentals of Physics	media.
4		Apply wave optics and diffraction theory
		to a range of problems
5		Explain and calculate the physical effects
		of acoustic reflections, absorption,

13.102: ENGINEERING PHYSICS

	scattering, diffusion, diffraction, and propagation losses.
6	Use advanced theoretical, numerical, and experimental techniques to model and analyze acoustical elements in musical instruments, the human voice, room acoustics, and audio.

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To impart sound knowledge in the different fields of theoretical chemistry so as to apply it to the problems in engineering field.	The confidence level of students will be improved to tackle problems in engineering field related to chemical aspects.
2	To develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems.	The students gain capability in fabricating novel materials with properties that find various engineering applications
	To acquire knowledge about desalination of brackish water and treatment of municipal water.	The students will be equipped to take up chemistry related topics as part of their project works during higher semesters of the course.
4	To gain the knowledge of conducting polymers, bio- degradable polymers and fibre reinforced plastics.	Develop innovative methods to produce soft water for industrial use and potable water at cheaper cost.
5	To understand mechanism of corrosion and preventive methods.	Substitute metals with conducting polymers and also produce cheaper

13.103: ENGINEERING CHEMISTRY

		biodegradable polymers to reduce environmental pollution. Design economically and new methods of synthesis nano materials.
6	To have an idea and knowledge about the Chemistry of Fuels.	Have the knowledge of converting solar energy into most needy electrical.

C1		
Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be
		able to:
1	Enable the students to effectively	Able to prepare the orthographic
	communicate graphic representation	projections of points and straight lines
	as per standards	placed in various quadrants
2	To develop imagination skill in	Demonstrate the ability to draw
	students and represent them	orthographic projections of various solids.
	effectively in a paper	
	Learn to sketch and take field	Ability to draw and interpret the sectioned
	dimensions.	views of solids
4	Learn to take data and transform it	Ability to draw the developments of various
-	into graphic drawings.	solids
	into graphic urawings.	solius
5		Will be confident in preparing the isometric
		and perspective views of various solids.
6		Ability to draw the projections of
		intersection of solids and perform free hand
		sketching.

13.104: ENGINEERING GRAPHICS

13.105: ENGINEERING MECHANICS

Course Objectives Subject Learning Outcomes or

Sl.

No.		Course Outcomes
		On completion of course the students will be
		able to:
1	To apply the principles of mechanics to practical engineering problems.	Understand the fundamental concepts of mechanics.
2	To identify appropriate structural	Students would be able to apply and
	system for studying a given problem and isolate it from its environment.	demonstrate the concepts of resultant and equilibrium of force system.
		equilibrium of force system.
	To develop simple mathematical	Students would be able to determine the
	model for engineering problems and	properties of planes and solids.
	carry out static analysis.	
4	To develop simple mathematical	Understand the concepts of moment of
	model for engineering problems and	inertia.
	carry out static analysis.	
5		Students would be able to apply
		fundamental concepts of dynamics to
		practical problems.
6		Understand the basic elements of vibration.

13.106: BASIC CIVIL ENGINEERING

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	This course imparts to the students, the fundamentals of civil engineering and creates awareness on various issues related to our living environment and their remedies	At the end of the course, the students will be familiar with the different stages of building construction, various materials used for construction and environmental issues
2	To inculcate the essentials of civil engineering field to the students of all branches	The students will be able to illustrate the fundamental aspects of civil engineering
	To provide the students an illustration of the significance of the civil engineering profession satisfying societal needs.	The students should able to plan a building
4	To inculcate the essentials of civil engineering field to the students of all branches	Students will be able to explain about surveying for making horizontal and vertical measurements.
5	•	They will able to illustrate the uses of various building materials and construction of different components of a building.
6		The students will be able to illustrate the fundamental aspects of civil engineering

SI.	Course Objectives	Subject Learning Outcomes or Course Outcomes
No.		On completion of course the students will be able to:
1	To expose the students to the thrust areas in Mechanical Engineering and their relevance by covering the fundamental concepts	The student will be able to understand the inter dependence of the thrust areas in Mechanical Engineering and their significance leading to the development of products, processes and systems.
2	This subject covers wide areas of Mechanical Engineering and is intended for exposing the students to the various theoretical and practical aspects of thermal engineering, fluid mechanics and machines, manufacturing and power transmission.	The student can able to understand the inter dependence of the thrust areas in Mechanical Engineering and their significance leading to the development of products and systems.
3		The students can able to understand working of automobiles.
4		Able to understand about various mechanical processes.

13.107: BASIC MECHANICAL ENGINEERING

13.108 BASIC ELECTRICAL & ELECTRONICS ENGINEERING

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
110.		On completion of course the students will be able to:
1	To impart a basic knowledge in Electrical Engineering with an understanding of fundamental concepts.	Gain preliminary knowledge in basic concepts of Electrical Engineering.
2	To impart the basic knowledge about the Electric and Magnetic circuits.	Discuss the working of various dc and ac machines
	To inculcate the understanding about the AC fundamentals.	To predict the behavior of any electrical and magnetic circuits.
4	To understand the working of various Electrical Machines.	To identify the type of electrical machine used for that particular application.
5		To wire any circuit depending upon the requirement.
6		Understand working principle of various analogue electrical measuring instruments.

13.109 FOUNDATIONS OF COMPUTING AND PROGRAMMING IN C

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	IntroduceVon-Neumannconcept,NumbersystemsinData	Able to identify different components of computer hardware.
	representation, perform arithmetic operations on number systems, ASCII and EBCDIC Character	Know about different number systems like binary, octal, hexadecimal etc
	representations	Able to perform different arithmetic operations on number systems
		Basic idea about ASCII and EBCDIC character representations.
2	Understand different types of programming languages, concept of	Brief overview of different programming languages.
	operating systems, compiler, assembler & interpreter, problem solving	Aware of basic concepts of OS, compiler, interpreter and assembler
	concepts, study algorithm and flowcharts, documentation, debugging,	Able to analyse and design simple problem solutions.
	testing & verification of programs.	Able to document, debug, test and verify a program correctly.
3	Understand important concepts of C programming, pre-processor directives, data types, operators, input and output,	Awareness about different types of pre- processor directives and storage classes.
	control statements, arrays, structure and union, storage classes, sorting and searching	Able to develop simple C programs using arrays and structures
		Able to develop programs for sorting and searching simple things

4	Study the basic concepts of pointers,	Develop C programs that help to store
	dynamic memory allocations,	solutions permanently using files, pointers and
	functions, files, command line	functions.
	programming	Awareness about the need and use of dynamic
		memory allocation in programs
		Basic idea about command line programming

SI.	Course Objectives	Subject Learning Outcomes or Course Outcomes
No.		On completion of course the students will be able to:
1	The Engineering Workshop Practice for engineers is a training lab course spread over entiresemester.	Student will be able to make various joints in the given object with the available work material.
2	The modules include training on different trades like Fitting, Carpentry, etc which makes the students to learn how various joints are made using wood and other metal pieces.	Student will be able to know how much time a joint will take for the assessment of time
	Familiarization of basic manufacturing hand tools and equipment like files, hacksaw, spanner chisel hammers, etc.	Knowledge achieved to explain the various manufacturing process in the basic mechanical engineering workshop sections- smithy, carpentry, assembling, welding etc.
4	Familiarization of various measuring devises like vernier height gauge, vernier caliper, micrometer, steel rule etc.	Identify the various hand tools used in the basic mechanical engineering workshop sections-smithy, carpentry, assembling, welding etc.

13.110: MECHANICAL ENGINEERING WORKSHOP COURSE

5	Able to choose different measuring devises according to the work.
6	Skill achieved to construct models by using basic mechanical workshop sections like welding, moulding, smithy, carpentry etc.

13.111: ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP

SI.	Course Objectives	Subject Learning Outcomes or
51.	Course Objectives	Course Outcomes
No.		
1100		On completion of course the students will
		be able to:
1	To enable the student to have the	On successful completion of this course
	practical skills for Electrical wiring	the student will have fundamental ideas
	and basic awareness of safety	about the electrical and electronic circuit,
	measures.	and will be able to apply safety practices
	measures.	to avoid accidents.
2	To impart fundamental knowledge	Familiarity with supply arrangements and
	in the use of electronic components	their limitations, knowledge of standard
	to set up circuits by soldering and	voltages and their tolerances, safety
	testing them.	aspects of electrical systems and
		importance of protective measures in
		wiring systems.
3	The objective of this course is to	Knowledge about the types of wires, cables
	familiarize the students with	and other accessories used in wiring.
	commonly used components,	Creating awareness of energy
	accessories and measuring	conservation in electrical systems.
	equipment in Electrical	conservation in creen real systems.
	installations.	
4	The course also provides hands on	Students should be able to wire simple
	experience in setting up of simple	lighting circuits for domestic buildings,
	wiring circuits	distinguish between light and power

		circuits.
5	This course gives the basic	To measure electrical circuit parameters
	introduction of electronic hardware	and current, voltage and power in a
	systems and provides hands-on	circuit.
	training with familiarization,	
	identification, testing, assembling,	
	dismantling, fabrication and	
	repairing such systems by making	
	use of the various tools and	
	instruments available in the	
	Electronics Workshop	
6		Familiarity with backup power supply in
		domestic installation

S3 CSE (2013 Batch)

13.301	Engineering Mathematics II	Sreelekha T R
13.302	Humanities	Prof. P J Rajan
13.303	Discrete Structures	Sissy Varghese
13.304	Electronic Devices & Circuits	Malu
13.305	Digital System Design	Roshini R
13.306	Data Structures and Algorithms	Dhanunath R
13.307	Electronic Circuits Lab	Preetha R
13.308	Programming Lab	Amitha R

13.301 ENGINEERING MATHEMATICS II

SI. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes On completion of course the students will
		be able to:
1	Learn to work with vectors in two and three dimensions.Learn to work with multivariable functions.Learn to work with vector functions.	Apply mathematics at this level to the real world, especially in the areas of physics and geometry.Find areas of plane regions, surface areas, and arc lengths
2	Mathematics fundamental necessary to formulate, solve and analyze engineering problems	Determine whether solutions of such an equation are linearly independent.
3	An understanding of Fourier Series and fourier Transform to solve real world problems	Use the methods of undetermined coefficients
4	Identify an partial differential equation and its order	How to transform a PDE of first order in canonical form.
5	Solve first order linear differential equations and seperable differential equation	How to solve PDE of first order using the method separation of variables
	To study the application of transform techniques to solve linear ordinary and partial differential equations and to solve boundary value problems by using Fourier series	Understand the basics of transformation techniques.

	Apply the transform techniques for solving ordinary differential equations and partial differential equations

SI.		Subject Learning Outcomes or Course Outcomes
No.	Course Objectives	On completion of course the students will be able to:
1	Use mathematically correct terminology and notation.	Be familiar with constructing proofs.Be familiar with elementary formal logic.
2	Construct correct direct and indirect proofs.	Be familiar with set algebra.Be familiar with combinatorial analysis.
3	Use division into cases in a proof	Be familiar with recurrence relations.
4	Use counterexamples.	Be familiar with graphs and trees, relations and functions, and finite automata.
5	Apply logical reasoning to solve a variety of problems	Be exposed to the strategies for compare relative efficiency of algorithms.

13.303 DISCRETE STRUCTURES

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To introduce to the students the fundamental concepts of electronic devices and circuits for engineering applications	Explain, illustrate, and design the different electronic circuits using electronic components
2	To develop the skill of analysis and design of various analog circuits using electronic devices	Design circuits using operational amplifiers for various applications
3	To provide comprehensive idea about working principle, operation and applications of electronic circuits	
4	To equip the students with a sound understanding of fundamental concepts of operational amplifiers	
5	To expose to the diversity of operations that operational amplifiers can perform in a wide range of applications	
6	To expose to a variety of electronic circuits/systems using various analog ICs	

13.304 ELECTRONIC DEVICES AND CIRCUITS

COURSE OBJECTIVES AND OUTCOMES

13.305: DIGITAL SYSTEM DESIGN

Sl No	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students
		will be able to:
	To impart an understanding of the basic	Study courses in higher semesters which
1	concepts of Boolean algebra and digital	includes organization of digital systems
	systems	and hardware design.
	Getting familiar with the design and	Design and implement different types of
2	implementation of different types of	practically used combinational and
	practically used sequential circuits	sequential circuits
	To provide an introduction to use	Use Hardware Description language for
3	Hardware Description Language.	defining simple logic circuits.

COURSE OBJECTIVES AND COURSE OUTCOMES

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will
		be able to:
1	To learn basic concepts programming methodologies and analysis of algorithms.	After successful completion of this course, students will be able to Interpret and compute asymptotic notations of an algorithm to analyze the consumption of resources (time/space).
2	To learn concepts of various data structures such as stack, queue, priority queue, strings, trees and graphs.	Implement stack, queue, list and tree ADT to manage the memory using static and dynamic allocations.
3	To acquire knowledge on various sorting techniques.	Develop and compare the searching and sorting algorithms.
4	To develop the skill to choose the most appropriate data structures for solving a given problem.	Identify appropriate data structure and algorithm for a given problem and implement in any programming language.

13.306 DATA STRUCTURE AND ALGORITHMS

COURSE OBJECTIVES AND COURSE OUTCOMES 13.307 ELECTRONIC CIRCUITS LAB

~-			
SI. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes	
		On completion of course the students will be able to:	
1	To introduce to the students the fundamental concepts of electronic devices and circuits for engineering applications	Explain, illustrate, and design the different electronic circuits using electronic components	
2	To develop the skill of analysis and design of various analog circuits using electronic devices	Design circuits using operational amplifiers for various applications	
3	To provide comprehensive idea about working principle, operation and applications of electronic circuits		
4	To equip the students with a sound understanding of fundamental concepts of operational amplifiers		
5	To expose to the diversity of operations that operational amplifiers can perform in a wide range of applications		
6	To expose to a variety of electronic circuits/systems using various analog		

ICs	

COURSE OBJECTIVES AND COURSE OUTCOMES 13.308 PROGRAMMING LAB

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To impart the basic concepts C programming	Able to develop simple applications like calculator, interest calculations etc.
2	Understand the C programming using array, structure	Able to develop programs for alphabetical sorting of names, sorting of students details based on certain criteria
3	Practise usage of functions in programming	Familiarized with modularized programming
4	To provide the knowledge of pointers, programming using command line arguments, files	Able to store and retrieve data records permanently

S5 CSE (2012 Batch)

08.501	Engineering Mathematics IV	Sissy Varghese
08.502	Advanced Mathematics and Queuing Models	Liji
08.503	Data Base Design	Sibi S
08.504	Systems Programming	Vivitha Vijay
08.505	Microprocessors and Interfacing	Sreeji C
08.506	Object Oriented Design and JAVA Programming	Divya V
08.507	Object Oriented Programming Lab	Divya V
08.308	Application Software Development Lab	Shaghnanath R

08.501 ENGINEERING MATHEMATICS IV

SI. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes On completion of course the students will be able to:
1	Understand how complex numbers provide a satisfying extension of the real numbers;	Compute sums, products, quotients, conjugate, modulus, and argument of complex numbers. Write complex numbers in polar form Compute exponentials and integral powers
2	Perform algebra with complex numbers.Compute complex line integ	Explain the fundamental concepts of complex analysis and their role in modern mathematics and applied contexts

3	Model decision making problems using major modeling formalisms of artificial intelligence and operations research, including propositional logic, constraints, linear programs and Markov processes,	Formulate simple reasoning, learning and optimization problems, in terms of the representations and methods presented (homework, quiz)
4	To provide adequate knowledge about the water treatment processes and its design	Demonstrate ability to solve systems of linear equations.
5		Demonstrate ability to work within vector spaces and to distill vector space properties

08.502: ADVANCED MATHEMATICS AND QUEUING MODELS

SI.	Course Objectives	Subject Learning Outcomes or Course Outcomes
No.		On completion of course the students will be able to:
1	To provide students with the ability to understand and conduct computer systems modelling and performance analysis.	To acquire skills in handling situations involving more than one random variable and functions of random variables.
2	To establish the necessary background, the course starts with an introduction to basic probability tools and concepts. It then builds up to	To apply basic probability techniques and models to analyze the performance of computer systems, and, in particular, of networks and queues.

	more advance topics that are	
	particularly useful in modeling, such	
	as Markov models and queueing	
	theory.	
	To understand probabilistic models	To have a well – founded knowledge of
2	are employed in countless	standard distributions which can describe
3	applications in all areas of science and	real life phenomena.
	engineering.	
	To provide necessary mathematical	To understand and characterize phenomena
4	support and confidence to tackle real	which evolve with respect to time in a
	life problems.	probabilistic manner.
		To understand basic characteristic features
5		of a queuing system and acquire skills in
		analyzing queuing models.
		To use discrete time Markov chains to model
		computer systems.

08.503 DATABASE DESIGN

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To introduce the concept of database and the real life applications. Introduced different models for designing databases. Also give an idea about different types of databases.	Ability to draw ER diagrams for databases. Able to search appropriate data from databases using various searching techniques. Able to classify the databases.
2	To introduce key concepts in the	Ability to create databases. Able to insert,

	database design. To introduce how to	delete values from databases. Students can able
	create databases and how to retrieve	to do various operations on the databases.
	databases. To give an idea about	Ability to explain the concepts of dependency
	various normal forms.	of databases.
3	To introduce the concepts of	Ability to identify the properties of
	transactions in real life applications like	transactions and able to do transactions and can
	banking applications. To introduce how	provide security to confidential databases.
	to provide security to databases.	

08.504 SYSTEM PROGRAMMING

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To impart the basic concepts of system software design.	Able to understand different system software architectures.
2	Different assembler design options and assembler implementations. Basic functions of loaders, linkers and macro processors.	Design and develop loader, linker and macro processor.

3	Basic funct	Basic functions macro processors.				Design and develop macro processor.
	Overview	Overview of text editors and				Able to understand the features of UNIX OS.
	debuggers.					

08.505 MICROPROCESSOR AND INTERFACING

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	Study on 8085 microprocessor, its	To study instruction sets and know in detail
	memory and interfacing, analog to	about working of microprocessor, to help them in design of microprocessors.
	digital converters, read and write	
	timing signals	
2	Study on 8086 microprocessor,	To study about instructions, its execution,
	addressing modes, timing diagrams	develop new real time applications using
		instruction sets, to get basic knowledge about
		the micro processor and to work on
		improvements in processing speeds.

3	Study on timers, counters, interfaces	The program motivates students to develop
	like keyboard	strong skills in research, analysis and
	like keyboard	interpretation of complex information
		The program prepares students to successfully
		compete for employment in Electronics,
		Manufacturing and Teaching industry

08.506 Object Oriented Design and Programming

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To understand the basic concepts of Object Oriented Design Techniques.	Apply object oriented principles in software design process.
2	To give a thorough understanding of Java language. Handling Exceptions in Java.	Applying various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using Java language.

3	Implementing threads in java.	Interpret Event handling techniques for
	Applet programming. Introduction to GUI classes and event Handling	interaction of the user with GUI. Analyze
	mechanisms.	JDBC drivers to connect Java applications
	To impart the techniques of creating GUI based applications.	with relational databases.

08.507 OBJECT ORIENTED PROGRAMMING LAB

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will
		be able to:
1	1. To introduce basic concepts of object oriented design techniques.	1.apply object oriented principles in software design process.
2	2. To give a thorough understanding of Java language.	2. develop programs for real applications using java constructs and libraries.
3	3. To provide basic exposure to the	3.understand and apply various object

	basics of multithreading, database connectivity etc.	oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using C++ language.
4	4. To impart the techniques of creating GUI based applications.	4. implement Exception Handling in C++.

08.508 APPLICATION SOFTWARE DEVELOPMENT LAB

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To introduce basic commands and	Design and implement a database for a given
	operations on database	problem using database design principles
2	To introduce stored programming	Apply stored programming concepts (PL-
	concepts (PL-SQL)using Cursors and Trigger	SQL) using Cursors and Triggers.
3	To familiarize front end tools of	Use graphical user interface, Event Handling
	database	and Database connectivity to develop and
		deploy applications and applets.
		Develop medium-sized project in a team.

S7 CSE (2011 Batch)

08.701	Computer Graphics	Sukesh Babu V S
08.702	Design and Analysis of Algorithms	Sreeji C
08.703	Computer Networks	Divya V
08.704.2	Multimedia Systems and Data Compression	Amitha R
08.705.2	Computer Hardware and Interfacing	Shreyas L
08.706	Computer Hardware and	Shreyas L

	Interfacing Lab	
08.707	Operating Systems and Network Programming Lab	Dhanunath R
08.708	Project Design and Seminar	Sreeji C

COURSE OBJECTIVES AND OUTCOMES

08.701 COMPUTER GRAPHICS

Sl No	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	Know and be able to describe the general software architecture of programs that use 3D computer graphics.	Understand the structure of modern computer graphics systems
2	Know and be able to discuss hardware system architecture for computer graphics.	Understand the basic principles of implementing computer graphics primitives
3	Know and be able to use the underlying	Familiarity with key algorithms for

algorithms, mathematical	concepts,	modeling and rendering graphical data
supporting computer graphics		
		Develop design and problem solving
		skills with application to computer graphics

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes On completion of course the students will be
		able to:
1	To introduce the important of	Ability to calculate the running time of
	algorithms and its running time in	algorithms using various methods.
	various applications. Also introduced	Able to a list using different sorting
	how to find the time needed for	techniques.
	executing an algorithm.	

08.702 DESIGN AND ANALYSIS OF ALGORITHMS

2	To introduce tree graph and different	Ability to generate different types of trees and
	operations can be applied to trees and	do various operations on them.
	graphs.	Ability create trees from graphs.
3	To introduce different techniques for	Ability to design algorithms for given
	designing algorithms.	problems. Able to solve different optimization
	To introduce different optimization	problems.
	techniques.	Able to prove the given problem is under Np or
	To introduce the concept of NP-	not.
	completeness.	

08.703 COMPUTER NETWORKS

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	Build an understanding of the fundamental concepts of computer networking.	Describe the different aspects of networks, protocols and network design models. Explain the various Data Link layer design issues and Data Link protocols
2	Familiarize the student with the basic	Analyze and compare different LAN protocols.

	taxonomy and terminology of the	Compare and select appropriate routing
	computer networking area.	algorithms for a network. Able to understand
		congestion control algorithms.
3	To understand the functions of network	Able to understand IP addressing. Able to
	layer, transport layer and application	understand IP protocols. Able to understand
	layer.	the functions of network layer, transport layer
		and application layer in internetworking.

08.704.2 MULTIMEDIA SYSTEMS AND DATA COMPRESSION

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To introduce the concepts related to multimedia DBMS.	1. Identify different digital media, and explain the features and architecture of multimedia systems.
2	To create a basic knowledge in compression and decompression of	2. Discuss the various applications of multimedia systems.

	different types of media.	
3	To develop an awareness regarding different types of multimedia systems.	 Discuss the properties of multimedia DBMS and apply them in data modeling.
		 Analyze compression techniques for different media like text, image, audio and video and use them in real world applications.
		5. Describe multimedia synchronization and its reference model.
		 Clearly distinguish the types of multimedia systems.

08.705.2 COMPUTER HARDWARE AND INTERFACING

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be
		able to:
1	Components of a computer,	Be familiar with the components of a
		computer. Detailed knowledge on memory to

	Introduction to memory, memory arrangements, memory modules, mother board features	select type of memory in your PC Identify the names, distinguishing features, and units for measuring different kinds of memory. Study on motherboard and its constituent components
2	Get familiarized with power supply components, mass storage medium and categories	Identify and rectify the hardware issues, do maintenance work. Select storage device of your requirement
3	Study on different i/o ports , types of keyboard, connectors, audio standards	To choose buses as per your requirement ,to select connectors .To trouble shoot keyboard and connectors

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will
		be able to:
1	Familiarization of pc components.	Be familiar with the components of a
	Assembling PC	computer. Detailed knowledge on memory to select type of memory in your PC Identify the names, distinguishing features, and units

08.706 COMPUTER HARDWARE AND INTERFACING LAB

		for measuring different kinds of memory. Study on motherboard and its constituent components
2	Interfacing through parallel	To familiarize the parallel port, its registers,
	:Interfacing with pc,	data transfer through parallel port
	Controlling stepper motor through	
	parallel port: base address of parallel	
	port	
3	Interfacing through serial port: base	To familiarize the serial port, its registers,
	address of serial port	data transfer through parallel port
4	8051 Micro controller experiments:	Generate user application to suit everyday
	Familiarization of 8051 trainer kit by	needs. Generate square waveform, saw-tooth waveform and other mixed waveform using
	executing simple Assembly Language	8051
	programs such as Multi byte addition,	
	searching, sorting, and code	
	conversion	

08.707 OPERATING SYSTEMS AND NETWORK PROGRAMMING LAB

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To introduce the concept of process,	Able to do process creation, do inter process

	threads, inter process communication.	communication by various methods.
	Also introduced the concepts of various	Also able to implement dining philosophers
	methods amiable for inter process	problem and bankers algorithm.
	communication.	
2	To introduce network concepts and	Ability to do client server communication
	communication between client and	using different protocols.
	server.	

08.708 PROJECT DESIGN AND SEMINAR

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be
		able to:
1	To improve the professional skill and	Able to understand the primary things to start a

	competency of the students	project
2	To understand the hardware and	Able to analyse a problem and design a
	software design of a good product	solution to the problem.
3	To study about a topic in trend, based	Able to create a report on a new topic in trend
	on the literature survey in leading	based on the study and literature survey.
	journals	

S4 CSE (2013 Batch)

13.401	Engineering Mathematics III	Sissy Varghese
13.402	Computer Organization & Design	Dhanunath R
13.403	Object Oriented Techniques	Shaghna Nath

13.404	Data communication	Suma S G
13.405	Database Design	Sibi S
13.406	Formal languages and Automata Theory	Roshini R
13.407	Data Structures Lab	Dhanunath R
13.408	Digital System Lab	Preetha R

13.401: ENGINEERING MATHEMATICS III

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:

1	To introduce the basic notion in complex analysis such as Analytic Functions, Harmonic functions and their applications in fluid mechanics and differentiations and integration of complex functions, transformations and their applications in engineering fields.	After successful completion of this course, the students will be able to use numerical methods to solve problems related to engineering fields.
2	Numerical techniques for solving differential equations are also introduced as a part of this course.	This course helps students to master the basic concepts of complex analysis which they can use later in their career.

COURSE OBJECTIVES AND OUTCOMES

13.402 COMPUTER ORGANIZATION AND DESIGN

Sl No	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:

Introduce students to the fundamental concepts underlying modern computer	understand the basics of computer hardware and how software interacts with
0	computer hardware
To familiarize students about hardware	analyze and evaluate computer
design including logic design, basic	performance
structure and behavior of the various	-
functional modules of the computer and	
how they interact to provide the processing	
needs of the user	
	understand how computers represent and
	manipulate data
	understand computer arithmetic and
	convert between different number
	systems
	understand basics of Instruction Set
	Architecture (ISA) – MIPS.
	concepts underlying modern computer organization and architecture. To familiarize students about hardware design including logic design, basic structure and behavior of the various functional modules of the computer and how they interact to provide the processing

13.403 OBJECT ORIENTED TECHIQUES

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	This course provides in-depth coverage of object-oriented programming principles and techniques using C++. Topics include classes, overloading, data abstraction, information hiding, encapsulation, Topics include inheritance, polymorphism, templates and low- level language features	Perform object oriented programming to develop solutions to problems demonstrating usage of control structures, modularity, I/O. and other standard language constructs. Demonstrate adeptness of object oriented programming in developing solutions to problems demonstrating usage of data abstraction, encapsulation, and inheritance. Demonstrate ability to implement one or more patterns involving realization of an abstract interface and utilization of
4	Topics file processing, exceptions, container classes, and low-level language features.	 polymorphism in the solution of problems which can take advantage of dynamic dispatching. Learn syntax, features of, and how to utilize the Standard Template Library. Learn other features of the C++ language including templates, exceptions, forms of casting, conversions, covering all features of the language. Learn features of the language which can be problematic with execution time or space and some techniques to resolve them. Learn features of the language which are non-deterministic, should not be utilized in hard real-time systems, and techniques for replacing those features.

13.404 DATA COMMUNICATION

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	Build an understanding of the fundamental concepts of data transmission. Familiarize the student with the basic taxonomy and terminology of the computer networking area.	After the successful completion of the course students will be able to explain Data Communications concepts and its components. Identify the different types of Transmission media and their functions within a network.
2	To introduce the concepts of different encoding methods.	Select and use appropriate signal encoding techniques for a given scenario.
3	To discuss the multiplexing techniques. To introduce different error detection and error correction techniques to achieve error free data communication	Independently understand basic computer network technology. Design suitable error detection and error correction algorithms to achieve error free data Communication.
4	To discuss the different Spread Spectrum and Switching Techniques. Preparing the student for understanding advanced courses in computer networking	Select and use appropriate multiplexing and switching techniques for a given scenario.

COURSE OBJECTIVES AND COURSE OUTCOMES

13.405 DATABASE DESIGN

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To impart the basic understanding of	Ability to draw ER diagrams for databases.
	the theory and applications of database	Able to search appropriate data from databases
	management systems. To introduce the	using various searching techniques. Able to
	concept of ER model.	classify the databases.
2	To introduce the concepts of database	Ability to create databases. Able to insert,
	languages. To introduce how to create	delete values from databases. Students can able
	database and how to retrieve data from	to do various operations on the databases.
	database using SQL.	
3	To introduce the concepts of	Ability to normalize database to avoid
	normalization and how to normalize the	redundancy of database.
	database.	
4	To introduce the organization of data in	Ability to identify the properties of
	a database. To introduce the concepts	transactions and able to do transactions and can
	of transactions in real life applications	provide security to confidential databases.
	like banking applications. To introduce	
	how to provide security to databases.	

COURSE OBJECTIVES AND COURSE OUTCOMES

13.406 FORMAL LANGUAGES AND AUTOMATA THEORY

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	Through automata, computer scientists	major objective of automata theory is to
	are able to understand how machines	develop methods by which computer scientists
	compute functions and solve problems	can describe and analyze the dynamic behavior
	and more importantly, what it means	of discrete systems, in which signals are
	for a function to be defined	sampled periodically. The behavior of these
	as <i>computable</i> or for a question to be	discrete systems is determined by the way that
	described as <i>decidable</i> .	the system is constructed from storage and
		combinational elements.
2	Languages that can be generated from	Describe the formal relationships among
	one-element languages by applying	machines, languages and grammars.
	certain standard operations a finite	
	number of times. They are the	
	languages that can be recognized by	
	finite automata.	
3	Context-free languages have many	An <i>objective</i> taxonomy of SSDLs would be
	applications in programming	based on the computation model, which
	languages, in particular, most	<i>CFG</i>) while the representations oriented to
	arithmetic expressions are generated by	architecture are based on FSMs.
	context-free grammars.	
4	How a <i>turing machine</i> can be	To design a computationa model.based on this
	implementeon <i>real</i> life operations for	we create an abstract machine.
	example how we can explain working	
	of an ATM using <i>turing machine</i>	

13.407 DATA STRUCTURES LAB

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To implement basic linear and non- linear data structures and their major operations.	Appreciate the importance of structure and abstract data type, and their basic usability in different applications.
2	To implement applications using these data structures.	Analyze and differentiate different algorithms based on their time complexity.
3	To implement algorithms for various sorting techniques.	Implement linear and non-linear data structures using linked lists.
4	Strengthen the ability to the students to identify and apply the suitable data structure for the given real world problem.	Understand and apply various data structure such as stacks, queues, trees, graphs, etc. to solve various computing problems
5	Enables them to gain knowledge in practical applications of data structures.	Implement various kinds of searching and sorting techniques, and decide when to choose which technique.
6	Be capable to identity the appropriate data structure for given problem.	Identify and use a suitable data structure and algorithm to solve a real world problem.

13. 408 DIGITAL SYSTEM LAB

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To understand different positional	Compare various positional number systems
	number systems and conversions.	and binary codes
2	To introduce basic postulates of	Apply Boolean algebra in logic circuit design
	Boolean algebra and show the	
	correlation between Boolean	
	expression	
3	To analysis and design various	Design combinational and sequential circuits
	combinational circuits and sequential	
	circuits	
4	To study the fundamentals of HDL	Design and implement digital systems using
		basic programmable blocks
5	To design and implement synchronous	
	sequential circuits	

S6 CSE (2012 Batch)

08.601	Compiler Design	Sukesh Babu V S

08.602	Principles of Programming Language	Girija D Devi
08.603	Formal languages and Automata Theory	Sibi S
08.604	Digital Signal Processing	Samitha
08.605	High Performance Microprocessors	Viswajith
08.606	Data Communication	Vivitha Vijay
08.607	Microprocessor Lab	Sreeji C
08.608	System Software Lab	Vivitha Vijay

COURSE OBJECTIVES AND OUTCOMES

08.601 COMPILER DESIGN

Subject Learning Outcomes or Course

Sl No	Course Objectives	Outcomes
		On completion of course the students will be able to:
1	To introduce the major concept areas of language translation and compiler design.	To apply the knowledge of lex tool & yacc tool to devleop a scanner & parser.
2	To enrich the knowledge in various phases of compiler ant its use, code optimization techniques, machine code generation, and use of symbol table.	To design & conduct experiments for Intermediate Code Generation in compiler.
3	To extend the knowledge of parser by parsing LL parser and LR parser.	To design & implement a software system for backend of the compiler.
4	To provide practical programming skills necessary for constructing a compile	To learn & use the new tools and technologies used for designing a compiler
		To develop program to solve complex problems in compiler
		To learn the new code optimization techniques to improve the performance of a program in terms of speed & space.

08.602 PRINCIPLES OF PROGRAMMING LANGUAGES

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
110.		On completion of course the students will be able to:
1	The course is built around an	Manipulate and generate lambda-terms,
	investigation of what programming	extending a system such as Church numerals; check and assign types to lambda
	languages are, and the notion of	terms.
	programs as artefacts. Two key	
	aspects of the study of programming	
	languages are their semantics, and	
	their syntax.	
2	We will survey some of the	Solve simple recursive equations by
	fundamental principles of the	determining the limit of the Kleene fixpoint construction.
	semantics and computational	
	behaviour of programs, including the	
	lambda calculus, types and fixed-	
	points.	
3	Rigorous proofs of properties of	design and extend operational and
	programs, such as are needed for	denotational definitions for basic programming language constructs.
	safety-critical software, or for	
	program transformations such as are	prove properties of programs by various formal means, including structural and
	carried out by optimising compilers,	fixpoint induction.
	require a formal description of the	
	'meaning' and behaviour of	
	programs	
4	The syntax of programming	demonstrate correspondences between
	languages is routinely defined by	grammars, languages and automata. use standard parser and lexer generator
	well-understood means, in terms of	tools to construct and implement
	formal grammars and their relation	translations such as a very simple compiler.
	to certain classes of automata.	

08.603 FORMAL LANGUAGES AND AUTOMATA THEORY (FR)

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	Through automata, computer scientists	Major objective of automata theory is to
	are able to understand how machines compute functions and solve problems	develop methods by which computer scientists can describe and analyze the dynamic behavior
	and more importantly, what it means for a function to be defined	of discrete systems, in which signals are sampled periodically. The behavior of these
	as <i>computable</i> or for a question to be	discrete systems is determined by the way that
	described as <i>decidable</i> .	the system is constructed from storage and
		combinational elements.
2	Context-free languages have many applications in programming languages; in particular, most arithmetic expressions are generated by context-free grammars.	An <i>objective</i> taxonomy of SSDLs would be based on the computation model, which <i>CFG</i>) while the representations oriented to architecture are based on FSMs.
3	How a <i>turing machine</i> can be implementeon <i>real</i> life operations for example how we can explain working of an ATM using <i>turing machine</i>	To design a computationa model.based on this we create an abstract machine.

COURSE OBJECTIVES AND OUTCOMES FOR

08.605 HIGH PERFORMANCE MICROPROCESSORS

		Course Outcomes
Sl.No	Course Objectives	On the completion of the course
		the student will be able to:
1	To study the architectural features of 80x86	Differentiate between the
	and Pentium processor family	architectural features of 80x86
		and Pentium processors
2	Understand the instructional and architectural	Explain the concepts of Hyper
	features of RISC processors	threading and Branch prediction
3	To study the instructions set of ARM	Explain the implementation of
	processors	compiler based register
		optimization, pipelining and the
		use of register file
4	To study the architecture of MIPS and SPARC	Explain the architecture of MIPS
	processors	and SPARC processors and relate
		it to the RISC processor
		characteristics
5	To study the architecture, instruction set and	Relate the ARM processor
	interfacing of 8051 microcontroller	instruction set to instructional
		characteristics of RISC
		processors
		Describe the architectural features
		of 8051 microcontroller
		Classify the instructions of 8051
		microcontroller
		Interface 16x2 LCD, keyboard
		and temperature sensor with 8051
		microcontroller

08.606 DATA COMMUNICATION

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	Familiarize the student with the basic taxonomy and terminology of the computer networking area. Discuss the different transmission media for data communication.	Students will be able to explain Data Communications concepts and its components. Identify the different types of Transmission media and their functions within a network.
2	To introduce the concepts of different encoding and multiplexing.	Select and use appropriate signal encoding techniques for a given scenario.
3	To introduce different error detection and error correction techniques. Discuss the different Switching and Spread spectrum methods. Introduction to wireless communication.	Design suitable error detection and error correction algorithms to achieve error free data Communication. Select and use appropriate switching techniques for a given scenario.

08.607 MICROPROCESSOR LAB

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
110.		On completion of course the students will be able to:
1	To get concept about 8085	Develop and execute programs to perform
	Microprocessor and their instruction set	data transfer, arithmetic& logical operations.
		and code conversions using 8085
		microprocessors and basic arithmetic
		operations using 8086.
2	To explain and execute arithmetic and	Generate square wave using 8085
	logical programs for microprocessor	microprocessor and to interface using PPI 8255
	based applications in electrical and	
	electronics engineering.	
3	To know about the basic operating	Make use of 8085 microprocessor for speed
	concepts of microprocessors	and position control of dc motor and stepper
		motor
4	To generate low level programming	
	like generation of square wave,	
	triangular wave etc	
5	To give awareness about the concept of	
	8086 Microprocessor	
6	To understand the basic operations that	
	can be run on 8086 microprocessors	

08.608 SYSTEM SOFTWARE LAB

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	 To design and implement assembler for a hypothetical machine. To design Macro processor. To get an exposure to design and implement various components of system software. 	 Understand latest features of translators. Apply the concept of finite automata to implement components of system software. Design system software using latest tools.

08.801	Software Engineering and Project Management	Divya V
08.802	Computer System Architecture	Sukesh Babu V S
08.803	Cryptography and Networks Security	Shreyas L
08.804	Distributed System	Amitha R
08.805.1	Fuzzy Set Theory and Applications	Sreeji C
08.806.4	Internet Technology	Vivitha Vijay
08.807	Algorithm Design Lab	Divya V
08.808	Project Work and Viva Voce	Sukesh Babu V S

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes On completion of course the students will be able to:
1	 Apply software testing and quality assurance techniques at the module level, and understand these techniques at the system and organization level. Understand common lifecycle processes including waterfall (linear), incremental approaches (such as Unified process), and agile approaches. 	 Design and implement both the server and client components of a client-server application, such as a web-based application. Know commonly used architectural patterns, styles, and tactics. Identify their impact upon various quality concerns such as scalability, performance, and reliability.
2	• Work collaboratively in a small team environment to develop a moderate-sized software system from conceptualization to completion, including requirements elicitation, system modelling, system design, implementation,	 Give examples of the primary project management activities associated with each major software engineering activity including requirements elicitation, analysis and specification; analysis and design; implementation;
3	• Work collaboratively in a small team environment to unit and system testing, integration, source code management configuration management, and release management.	• Apply the principles and techniques of software engineering in the architectural design, detail design, and implementation of computer games or other entertainment focused software applications.
4	• Prepare technical documentations and make presentations on various aspects of a software development project, including the technical aspects as well as the managerial aspects.	• Develop a business plan for a start-up software business to be presented to a venture capitalist.

08.801 SOFTWARE ENGINEERING AND PROJECT MANAGEMENT

COURSE OBJECTIVES AND OUTCOMES

08.802 COMPUTER SYSTEM ARCHITECTURE

Sl No	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To acquire a basic knowledge about computer system architecture, arithmetic, digital circuits and the low - level programming skills.	Describe the principles of computer design.
2	Ability to describe the operation of modern and high performance computers.	Classify instruction set architectures.
3	Ability to undertake performance comparisons of modern and high performance computers.	Describe the operation of performance enhancements such as pipelines, dynamic scheduling, branch prediction, caches, and vector processors
4	Development of software to solve computationally intensive problems.	Describe modern architectures such as RISC, Super Scalar, VLIW (very large instruction word), multi-core and multi- cpu systems.
		Develop applications for high performance computing systems.

08.803 CRYPTOGRAPHY & NETWROK SECURITY

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	Introduce cryptography, key terms, substitution techniques, transposition	Able to understand cipher model, substitution and transposition techniques.
	techniques, rotor machines, symmetric	Brief overview of symmetric models
	cipher models: DES, AES, IDEA	Understood round structure of DES, AES, IDEA
2	Provide an overview of Asymmetric encryption, RSA, Diffie Hellman key	Able to differentiate symmetric and asymmetric encryption techniques.
	exchange, Elliptic curve cryptography, SHA, MD5, digital signatures	Able to encrypt simple messages using RSA, ECC
		Understood the concept of message authentication using SHA,MD5
		Obtained the basic concept and significance of digital signatures
3	Provide an overview of need and	Awareness about the working of PGP and
	possibilities for Network security.	S/MIME protocols.
	Introduce email security protocols	Understood about different protocols that
	PGP, S/MIME, Give a brief idea about	provide network security at IP layer.
	IPSec, firewalls	
		Obtained an idea about different firewalls.

08.804 DISTRIBUTED SYSTEMS

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	The course aims to provide an understanding of the principles on which the Internet and other distributed systems are based; their architecture, algorithms and how they meet the demands of contemporary distributed applications.	 Key concepts and well-known methods will be explained in lectures, classes or online, where syllabus material will be presented and the subject matter will be illustrated with demonstrations and examples;
2	The course covers the building blocks for a study of distributed systems, and addressing the characteristics and the challenges that must be addressed in their design: scalability, heterogeneity, security and failure handling being the most significant.	• Tutorials will focus on problem solving and they will provide practice in the application of theory and procedures, allow exploration of concepts with teaching staff and other students, and give feedback on your progress and understanding;
3	This course also covers issues and solutions related to the design and the implementation of distributed applications.	• Computer laboratory sessions provide practices in the application of developing basic distributed applications using RPC;

08.805.2 MOBILE AND WIRELESS NETWORK

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes On completion of course the students will be
1	To introduce the major concepts related to wireless communication.	able to:After successful completion of this course, the students will be able to:Explain different transmission techniques and modulation schemes for wireless communication
2	To develop awareness regarding the medium access control protocols in designing wireless networks.	Use appropriate medium access control protocol in designing wireless networks
3	To provide an understanding regarding different generations of cellular wireless networks.	Summarize various technology trends for next generation cellular wireless networks.
4		Identify the components of GSM, GPRS and Bluetooth software model for mobile computing
5		Describe protocol architecture of WLAN technology, WAP and WML file systems.
6		Illustrate routing algorithms and different transmission control techniques in transport layer.

08.806.2 INTERNET TECHNOLOGY

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To learn the basic web concepts and	Able to do simple web page designs
	Internet protocols, To familiarize with	
	Scripting Languages, To learn basic	Brief awareness about java script
	concepts of PHP programming	Obtained basic knowledge about PHP programming
2	Provide a brief overview about web server hardware and software, working	Understood the working of an e-commerce software
	of e-commerce software, different online payment methods	Awareness about different online transactions
		Understood the concept of web server and different web servers
3	To make them aware about some web application protocols	Awareness about internet domain names.
		Basic idea about email protocols
		Knowledge about different file transfer protocols

08.807 ALGORITHM DESIGN LAB

Sl.	Course Objectives	Subject Learning Outcomes or
-----	-------------------	------------------------------

No.		Course Outcomes
		On completion of course the students will be
		able to:
1	To introduce different computer	Ability to draw lines, circles by using different
	graphics techniques. Introduced various	algorithms. Able to do transformations,
	algorithms for drawing line, circle, etc.	projections etc.
	Introduced the concept of projections,	
	transformations etc.	
2	To introduce the concept of animations.	Students can do animations for various
		applications with the help of computer
		graphics techniques.
3	To introduce the concepts of trees,	Ability to do graph traversal, tree creation, find
	graphs, different searching methods,	shortest path, solves different optimization
	optimization problems etc.	problems.

08.808 PROJECT WORK AND VIVA VOCE

Sl. No.	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To improve the professional skill and	Able to develop a product and present it
	competency of the students	effectively.
2	To encourage the students to develop	Acquired enough confidence to enter into an
	an application by themselves	industry
3	To make them industry ready people by	Improves interpersonal communication skills
	enhancing their technical and softskills.	
2	To assess their overall knowledge	Able to identify their weaker areas and helps to
	about the subjects studied in their	improve.
	carriculam	