2013-2014

MECHANICAL ENGINEERING

<u>2013-2014</u>

Odd semester

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S7

MECHANICAL

08.701: PRINCIPLES OF MANAGEMENT AND DECISION MODELING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Examination of management theory	Evaluate the global context for taking
	and provide opportunities for	managerial actions of planning, organizing
	application of these ideas in real	and controlling.
	world situations.	
2	This examination focuses on the	Assess global situation, including
	managerial functions of Assessing,	opportunities and threats that will impact
	Planning, Organizing, and	management of an organization.
	Controlling.	
3	Both traditional and cutting-edge	Integrate management principles into
	approaches are introduced and	management practices.
	applied.	
4	Specific attention is paid throughout	Assess managerial practices and choices
	the course to the ethical implications	relative to ethical principles and standards.
	of managerial action and inaction.	Specify how the managerial tasks of
		planning, organizing, and controlling can be

	executed in a variety of circumstances.
5	Determine the most effective action to take in specific situations.
6	Evaluate approaches to addressing issues of diversity.

08.702: MECHATRONICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Have a strong foundation in science	Employ the knowledge of mathematics,
	and focus in mechanical, electronics,	science, and engineering.
	control, software, and computer	
	engineering, and a solid command of	
	the newest technologies.	
2	Be able to design, analyze, and test	Design and conduct experiments to evaluate
	"intelligent" products and processes	the performance of a mechatronics system
	that incorporate	or component with respect to specifications,
	appropriate computing tools,	as well as to analyze and interpret data.
	sensors, and actuators.	
3	Be able to demonstrate professional	Design mechatronics component, system or
	interaction and communicate	process to meet desired needs.
	effectively with team members.	
4	Be able to work efficiently in	Define and solve engineering problems.
	multidisciplinary teams.	
5	Be prepared for a variety of	Use the techniques, skills, and modern
	engineering careers, graduate	mechatronics engineering tools necessary
	studies, and continuing	for engineering practice.

	education	
6	Practice professional and ethical	Function effectively as members of
	responsibility, and, be aware of the	multidisciplinary teams.
	impact of their designs on human-	
	kind and the environment.	

08.703: GAS DYNAMICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To familiarize with behavior of	To distinguish between various flow regimes
	compressible gas flow	
2	To understand the difference	To analyse the flow under different flow
	between subsonic and supersonic	conditions
	flow	
3	To familiarize with high speed test	To assess the flow behavior and consequent
	facilities	loads due to flow
4	To understand the basic difference	To get the knowledge about the main
	between incompressible and	properties which are used for analyzing or
	compressible flow.	modeling of compressible flow.
5	Topics to be covered include	Formulate and solve problems in one -
	conservation laws, propagation of	dimensional steady compressible flow
	disturbances, isentropic flow,	including: isentropic nozzle flow, constant
	compressible flow in ducts with area	area flow with friction (Fanno flow) and
	changes, normal and oblique shock	constant area flow with heat transfer
	waves and applications, Prandtl-	(Rayliegh flow).
	Meyer flow and applications, simple	
	flows such as Fanno flow and	

	Rayleigh flow with applications to	
	concepts.	
6	The method of characteristics will be	• Derive the conditions for the change in
	described in one dimensional	pressure, density and temperature for flow
	unsteady isentropic flow.	through a normal
		shock.
7	The emphasis will be on the physical	• Determine the strength of oblique shock
	understanding of the phenomena and	waves on wedge shaped bodies and concave
	basic analytical results.	corners.
		• Determine the change in flow conditions
		through a Prandtl-Meyer expansion wave.
		• Complete a numerical analysis to solve an
		unsteady one-dimensional flow problem.

08.704: REFRIGERATION & AIR-CONDITIONING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Students will learn the basic concepts	Students will demonstrate an ability to
	and principles of air conditioning	analysis psychrometric processes and cycles
	and refrigeration.	of air conditioning systems.
2	Students will learn the fundamental	Students will demonstrate an ability to
	analysis methodology of air	estimate the energy requirements of cooling
	conditioning and refrigeration.	and heat equipment for simple air
		conditioning applications.
3	Students will learn the basic process	Students will demonstrate an ability to
	and systems of air conditioning and	analysis and heat loads, particularly from
	refrigeration.	solar radiation.
4	Students will apply the course	Students will demonstrate an ability to
	knowledge to do a design project of	estimate energy requirements for simple air
	HVAC system.	conditioning processes.
5		Students will demonstrate an ability to
		apply principles of air conditioning to
		perform energy analysis of simple air
		conditioning applications.
6		Students will show an ability to apply the

	HVAC theory to design a HVAC system.

08.705: DESIGN OF MACHINE ELEMENTS II COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Develop an ability to apply	Be able to analyze the stress and strain on
	knowledge of mathematics, science,	mechanical components; and understand,
	and engineering	identify and quantify failure modes for
	Outcomes	mechanical parts
2	To develop an ability to design a	Demonstrate knowledge on basic machine
	system, component, or process to	elements used in machine design; design
	meet desired needs within	machine elements to withstand the loads
	realistic constraints.	and deformations for a given application,
		while considering additional specifications.
3	To develop an ability to identify,	Be able to approach a design problem
	formulate, and solve engineering	successfully, taking decisions when there is
	problems.	not a unique answer.
4	To develop an ability to use the	Be proficient in the use of software for
	techniques, skills, and modern	analysis and design.
	engineering tools necessary	
	for engineering practice.	
5		Students attended this course are able to
		analyse and design the basic mechanical

	systems.
6	At the end of this course, students should be
	able to recognize the formation and
	calculation methods of commonly used
	machine elements.

08.706: NON-CONVENTIONAL MACHINING TECHNIQUES COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The course aims in identifying the	After completion of course, the student shall
	classification of unconventional	understand the principle of working,
	machining processes.	mechanism of metal removal in the various
		unconventional machining process.
2	To understand the principle,	The student is able to identify
	mechanism of metal removal of	the process parameters, their effect and
	various unconventional	applications of different processes.
	machining processes.	
3	To study the various process	Upon completion of this course, the students
	parameters and their effect on the	can able to demonstrate different
	component machined on various	unconventional machining processes and
	unconventional machining processes.	know the influence of difference process
		parameters on the performance and their
		applications.
4	To understand the applications of	Ability to extend, through modeling
	different processes.	techniques, the single point, multiple point
		and abrasive machining processes
5	To teach the machining surface	Estimate the material removal rate and

	finish and material removal rate	cutting force, in an industrially useful
		manner, for practical machining processes
6	To teach the mechanics and thermal	effects of tool geometry on machining force
	issues associated with chip formation	components and surface finish

08.707: THERMAL ENGINEERING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The objective of the thermal	Compute the property of fuels and
	engineering laboratory is to	lubricating oils using suitable tests.
	introduce the student the	
	fundamental theories and the	
	industrial applications of	
	thermodynamics, heat transfer, and	
	fluid mechanics.	
2	This laboratory supports the courses	Demonstrate the performance of internal
	for the undergraduate and graduate	combustion engines and air compressors.
	studies.	
3	Moreover, this laboratory also	Interpret the emission characteristics of
	supports the advanced research in	internal combustion engines.
	the area of thermal engineering, heat	
	transfer, and fluid mechanics.	
4	To provide knowledge on testing of	
	properties of fuels and lubricating	
	oils	
5	To demonstrate and conduct	

	experiments, interpret and analyze	
	data and report results of IC Engine	
	testing	
6		

08.708: MECHANICAL ENGINEERING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To apply various measurement	Describe the fundamental concepts in
	techniques to inspect and test	measurement methods, techniques.
	products	
2	To apply statistical tools for quality	Apply various instruments for
	assurance purpose	measurements
3	To test and evaluate various	Apply quality control tools to achieve
	components using various measuring	defects free quality products
	instruments	
4		Take precise measurements using various
		instruments.
5		Develop data for engineering analysis.
6		

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S5

MECHANICAL

08.501: ENGINEERING MATHEMATICS IV COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide a basic understanding of	After successful completion of this course,
	random variables and probability	the students will be familiar with the large
	distributions.	scale applications of linear programming
		techniques which require only a few minutes
		on the computer.
2	Mathematical programming	Also they will be familiar with the concepts
	techniques are introduced as a part	of probability distributions which are
	of this course.	essential in transportation engineering.
3	These techniques are concerned with	
	the allotment of available resources	
	so as to minimize cost or maximize	
	profit subject to prescribed	
	restrictions.	
4		

5	
6	

08.502: ELECTRICAL TECHNOLOGY COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The objective of this course is to give	The student will get a good grasp on
	a strong foundation on all electrical	working of electrical machines and
	machines including dc machines,	transformers, and their applications.
	transformers, induction motors and	
	synchronous motors. It also gives a	
	basic idea about traction and	
	welding.	
2	To study the basic concepts involved	Know the working of DC generators and
	in the operation of different types of	DC motor.
	electrical machines.	
3	To analyze the different types of	Understand the details of Induction motors,
	switching, controlling & protective	synchro, servomotor, stepper
	devices.	motor.
4	To study the basic concepts of	Understand the working of Drives &
	industrial heating & welding	braking, Switching &
		protective devices
5	To study the usage of appropriate	Know the details of Electrical measuring
	electrical measuring instruments.	instruments, heating & welding

6	

08.503: THEORY OF MACHINES COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To understand the layout of linkages in	Able to understand basic elements of
	the assembly of a system/machine.	mechanism
	To study the application of friction in	
	different devices.	
2	To study the principles involved in	The students will be able to perform velocity
	assessing the displacement, velocity	analysis of mechanism
	and acceleration at any point in a link	
	of a mechanism.	
3	To analyse the motion resulting from a	The students will be able to perform
	specified set of linkages in a	acceleration analysis of mechanism
	mechanism.	
4	To study the power transmission	The students will be able to perform
	devices.	dimensional synthesis of simple mechanisms
		mechanism
5		The students will be able to perform force
		analysis of belt drives
6		The students will be able to design clutch plate.

	The students will be able to perform analysis
	of gear trains

08.504: INDUSTRIAL ELECTRONICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To learn industrial electronics in	After the completion of the course, the
	applied manner with perspective of	students will be familiar with the use of
	mechanical engineering.	electronic devices and systems in the field of
		mechanical engineering
2	To introduce the design philosophy	Choose relevant thyristor for the given
	for mechanical processes control	application
	based on analog and digital	
	electronics	
3	Develop an understanding of	Troubleshoot AC & DC power control
	electrical relationships.	circuits employing thyristors
4	Develop familiarity with power	Use photoelectric devices in relevant
	distribution equipment and	applications
	requirements.	
5	Develop skills to identify proper	Use different types of timers in specific
	electrical	applications
	safety equipment and electrical	
	safety procedures.	
6	Develop skills to calculate electrical	Maintain induction heating and dielectric

circuit parameters	heating equipment

08.505: MACHINE TOOLS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The course provides students with	Apply cutting mechanics to metal machining
	fundamental knowledge and	based on cutting force and power
	principles in material removal	consumption.
	processes.	
2	In this course, the students apply the	Operate lathe, milling machines, drill press,
	fundamentals and principles of metal	grinding machines, etc.
	cutting to practical applications	
	through multiple labs using lathes,	
	milling machines, grinding machines,	
	and drill presses, Computer	
	Numerical Control etc.	
	To demonstrate the fundamentals of	Select cutting tool materials and tool
	machining processes and machine	geometries for different metals.
	tools.	
4	To develop knowledge and	Select appropriate machining processes and
	importance of metal cutting	conditions for different metals.
	parameters.	
5	To develop fundamental knowledge	Learn machine tool structures and

	on tool materials, cutting fluids and	machining economics.
	tool wear mechanisms.	
6	To apply knowledge of basic	Write simple CNC programs and conduct
	mathematics to calculate the	CNC machining.
	machining parameters for different	
	machining processes.	

08.506: NON-DESTRUCTIVE TESTING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.	U U	Course Outcomes
		On completion of course the
		students will be able to:
1	To introduce the basic principles,	Discuss the basic principles, techniques,
	techniques, equipment, applications	equipments used in NDT
	and limitations of NDT methods.	
2	To enable selection of appropriate	The students will be able to differentiate
	NDT methods.	various defect types.
	To identify advantages and	Ability to apply scientific and technical
	limitations of non destructive testing	knowledge to the field of non-destructive
	methods.	testing.
4	To make aware the developments	Recognition of the need and ability to
	and future trends in NDT.	engage in lifelong learning, thought process
		and development
5		Ability to use the relevant non-destructive
		testing methods for various engineering
		practice.
6		Recognize and achieve high levels of
		professionalism in their work

08.507: PRODUCTION ENGINEERING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To acquaint the basics of lathe and	At the end of the course, the students will be
	accessories, shaping and slottng	familiar with the various operations
	machine,planning machines	using lathe, shaping, slotting and planning
		machines.
2	To learn the different tools used for	Do simple machining operations.
	various operations of machines.	
3	To impart training on plane turning,	Conduct cutting force measurements.
	groove cutting, form turning, taper	
	turning,facing and thread cutting.	
4	To physically study machine tools	Know the fundamental settings of milling
	and basic machining processes like	machines and drilling machines.
	milling, grinding etc.	
5	To practice metal cutting in milling	Understand the working of gear cutting
	machines, tool-grinder machines,	mechanism and indexing.
	cylindrical grinding machines and	
	surface grinding machines.	
6	To conduct measurement of metal	Understand the machining operations like

cutting forces and understand their	grinding and planing.
importance	

08.508: ELECTRICAL & ELECTRONICS LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To give a practical knowledge on the	At the end of this course the students will be
	working of electrical machines	able to test and validate DC generators,
	including dc machines, transformers,	DC motors and Transformers.
	induction motors and synchronous	
	motors.	
2	It also gives the basics about design	Students will have the basic knowledge on
	and implementation of small	working of semiconductor devices.
	electronic circuits	
3		
4		
5		
6		

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S3

MECHANICAL

08.301: ENGINEERING MATHEMATICS II COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	This course provides students a basic	At the end of the course, the students will
	understanding of vector calculus,	have the basic concepts of vector analysis.
	Fourier series and Fourier	
	transforms which are very useful in	
	many engineering fields.	
2	Partial differential equations and its	At the end of the course, the students will
	applications are also introduced as a	have the basic concepts of Fourier series,
	part of this course.	Fourier transforms which they can use later
		to solve problems related to engineering
		fields.
3		At the end of the course, the students will
		have the basic concepts of Partial
		differential equations
4		

5	
6	

08.302: HUMANITIES COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To explore the way in which	The students will be acquainted with its
	economic forces operate in the	basic concepts, terminology, principles and
	Indian Economy.	assumptions of Economics.
2	The subject will cover analysis of	It will help students for optimum or best use
	sectors, dimensions of growth,	of resources of the country
	investment, inflation and the role of	
	government will also be examined.	
3	The principle aim of this subject is to	It helps students to use the understanding of
	provide students with some basic	Economics of daily life
	techniques of economic analysis to	
	understand the economic processes	
	with particular reference to India.	
4	To give basic concepts of book	The students will get acquainted with the
	keeping and accounting	basics of book keeping and accounting
F		
5		

	-	
	6	
	U	
L		

08.303: FLUID MECHANICS AND MACHINES COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To acquire knowledge on hydraulic	Calculate forces and work done by a jet on
	machines such as pumps and	fixed or moving plate and curved plates.
	turbines	
2	To understand the working of air	Discuss the characteristics of impulse and
	compressors and do the analysis	reaction turbines.
3	To apply acquired knowledge on real	Know the working of turbines and select the
	life problems.	type of turbine for an application.
4	To analyze existing systems in	Discuss the characteristics of centrifugal
	hydraulic machines and design new	pump and reciprocating pumps.
	systems used in hydraulic machines.	
5		Do the analysis of air compressors and select
		the suitable one for a specific application.
6		Apply principles of fluid mechanics to the
		operation, design, and selection of fluid
		machinery such as pumps, compressors, and
		turbines.
08.304: MECHANICS OF SOLIDS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To acquaint the basic concepts of	Understand the basic concepts of stress and
	stress and deformations in solids.	strain in solids.
2	To practice the methodologies to	Determine the stresses in simple structural
	analyse stresses and strains in simple	members such as shafts, beams, columns,
	structural members.	etc.
3.	To solve advanced solid mechanics	To obtain stresses and deflections of beams
	problems using classical methods.	on elastic foundations and to obtain
		solutions to column buckling and plate
		problems.
4	To apply commercial software on	To develop a basic understanding and
	select, applied solid mechanics	ability to use ANSYS for the modeling and
	problems.	solution of beam, frame, and shell
		structures;
5		
6		

08.305: THERMODYNAMICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To understand basic thermodynamic	Understand the laws of thermodynamics
	principles and laws	and their significance
2	To develop the skills to analyze and	Apply the principles of thermodynamic for
	design thermodynamic systems.	the analysis of thermal systems
	To enable students to be more aware	Understand the applications of
	of the behavior of materials in	thermodynamics
	engineering applications and select	
	the materials for various engineering	
	applications based on their thermal	
	properties.	
4	To understand the thermal devices	Recognize the relations exhibited in
	completely	thermodynamics.
5	To determine thermal properties of	Select materials for applications as per their
	unknown materials and develop an	thermal properties.
	awareness to apply this knowledge in	
	material design.	
6		Apply core concepts in thermodynamics to

	solve engineering problems.

08.306: ENGINEERING DRAWING COURSE

SI	Course Objectives	Subject Learning Outcomes or
51.	Course Objectives	Subject Learning Outcomes of
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide a general idea about	The students will be familiar with the
	basic sketching, dimensioning and	preparation of drawings of machine
	BIS	components.
2	To provide an overview in preparing	The students will be able to prepare
	drawings of machine components	freehand sketches of different machine
		components
3	To provide an insight into detailed	The students will be able to prepare
	drawings of building components,	estimation of small residential/industrial
	preparation of drawings and	buildings
	estimation of small	
	residential/industrial buildings.	
4		The students will be able to prepare
		drawings of small residential/industrial
		buildings
5		
6		

08.307: CIVIL ENGINEERING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To demonstrate the basic principles	This subject will lay foundation to study
	and important concepts in the area	subjects like mechanics of materials,
	of strength and mechanics of	machine design etc.
	materials and structural analysis to	
	the students through a series of	
	experiments.	
2	To give an introduction to the use of	It also provides students a feel for how
	Levelling instruments and	various engineering properties of materials
	Theodolites	are applied in engineering practice.
3		The students will have the basic awareness
		of survey using level and theodolite.
4		
5		
6		

08.308: COMPUTER AIDED DRAFTING AND MODELING LAB COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To develop skill to use software to	Ability to use the software packers for
	create 2D and 3D models.	drafting and modeling
2	To train the students in Solid	Ability to create 2D and 3D models of
	Modelling	Engineering Components
3		At the end of the course, students shall be
		able to understand various phases in
		engineering design process through
		modelling
4		
5		
6		

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S1&S2 MECHANICAL

13.101: ENGINEERING MATHEMATICS I COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	This course provides students an	At the end of the course, the students will be
	insight into the various applications	familiar with various concepts of calculus
	of differentiation, partial	which are essential for engineering.
	differentiation techniques	
2	The methods for solving differential	They'll also become acquainted with the
	equations and the concept of linear	basic ideas of Laplace transforms and linear
	algebra are also introduced as a part	algebra
	of this course.	
3	This course provides students an	
	insight into the various applications	
	of multiple integrals	
4	This course provides students an	
	insight into the various applications	
	of Laplace transforms.	
5		

6		

13.102: ENGINEERING PHYSICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Dynamics of mechanical and	Solve for the solutions and describe the
	electrical oscillation using Fourier	behavior of a damped and driven harmonic
	series and integrals; time and	
		oscillator in both time and frequency
	frequency representations for driven	
		domains. Damped and Forced Oscillations
	damped oscillators, resonance; one-	
		oscillating system problems.
	dimensional waves in classical	
	mechanics and electromagnetism;	
	normal modes.	
2	The fundamental principles of	Define and explain the propagation of light
	photonics that complement the topics	in conducting and non-conducting media.
	in the optics and laser courses and to	
	help students develop problem-	
	solving skills applicable to real-world	
	photonics problems.	
	This course equip the students to	Define and explain the physics governing

	assimilate engineering and	laser behaviour and light matter interaction
	technology through the exposure of	ting and non-conducting media.
	fundamentals of Physics	
4		Apply wave optics and diffraction theory to
		a range of problems
5		Explain and calculate the physical effects of
		acoustic reflections, absorption, scattering,
		diffusion, diffraction, and propagation
		losses.
6		Use advanced theoretical, numerical, and
		experimental techniques to model and
		analyze acoustical elements in musical
		instruments, the human voice, room
		acoustics, and audio.

13.103: ENGINEERING CHEMISTRY COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To impart sound knowledge in the	The confidence level of students will be
	different fields of theoretical	improved to tackle problems in engineering
	chemistry so as to apply it to the	field related to chemical aspects.
	problems in engineering field.	
2	To develop analytical capabilities of	The students gain capability in fabricating
	students so that they can	novel materials with properties that find
	characterize, transform and use	various engineering applications
	materials in engineering and apply	
	knowledge gained in solving related	
	engineering problems.	
	To acquire knowledge about	The students will be equipped to take up
	To acquire knowledge about	The students will be equipped to take up
	desalination of brackish water and	chemistry related topics as part of their
	treatment of municipal water.	project works during higher semesters of
		the course.
4	To gain the knowledge of conducting	Develop innovative methods to produce soft
	polymers, bio-degradable polymers	water for industrial use and potable water
	and fibre reinforced plastics.	at cheaper cost.

5	To understand mechanism of	Substitute metals with conducting polymers
	corrosion and preventive methods.	and also produce cheaper biodegradable
		polymers to reduce environmental pollution.
		Design economically and new methods of
		synthesis nano materials.
6	To have an idea and knowledge	Have the knowledge of converting solar
	about the Chemistry of Fuels.	energy into most needy electrical.

13.104: ENGINEERING GRAPHICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Enable the students to effectively	Able to prepare the orthographic
	communicate graphic representation	projections of points and straight lines
	as per standards	placed in various quadrants
2	To develop imagination skill in	Demonstrate the ability to draw
	students and represent them	orthographic projections of various
	effectively in a paper	solids.
	Learn to sketch and take field	Ability to draw and interpret the sectioned
	dimensions.	views of solids
4	Learn to take data and transform it	Ability to draw the developments of various
	into graphic drawings.	solids
5		Will be confident in preparing the isometric
		and perspective views of
		various solids.
6		Ability to draw the projections of
		intersection of solids and perform free
		hand sketching.

13.105: ENGINEERING MECHANICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To apply the principles of mechanics	Understand the fundamental concepts of
	to practical engineering problems.	mechanics.
2	To identify appropriate structural	Students would be able to apply and
	system for studying a given problem	demonstrate the concepts of resultant and
	and isolate it from its environment.	equilibrium of force system.
	To develop simple mathematical	Students would be able to determine the
	model for engineering problems and	properties of planes and solids.
	carry out static analysis.	
4	To develop simple mathematical	Understand the concepts of moment of
	model for engineering problems and	inertia.
	carry out static analysis.	
5		Students would be able to apply
		fundamental concepts of dynamics to
		practical problems.
6		Understand the basic elements of vibration.

13.106: BASIC CIVIL ENGINEERING COURSE

CI		
SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	This course imparts to the students,	At the end of the course, the students will be
	the fundamentals of civil engineering	familiar with the different stages of building
	and creates awareness on various	construction, various materials used for
	issues related to our living	construction and environmental issues
	environment and their remedies	
2	To inculcate the essentials of civil	The students will be able to illustrate the
	engineering field to the students of	fundamental aspects of civil engineering
	all branches	
	To provide the students an	The students should able to plan a building
	illustration of the significance of the	
	civil engineering profession satisfying	
	societal needs.	
4	To inculcate the essentials of civil	Students will be able to explain about
	engineering field to the students of	surveying for making horizontal and
	all branches	vertical measurements.
5	•	They will able to illustrate the uses of
		various building materials and construction
		of different components of a building.
		• 0

6	The students will be able to illustrate the
	fundamental aspects of civil engineering

13.107: ENGINEERING THERMODYNAMICS COURSE

SI	Course Objectives	Subject Learning Outcomes or
51.	Course Objectives	Subject Learning Outcomes of
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Understanding the basic	After the completion of this course, students
	thermodynamic principles,	will get necessary foundation for a complete
		understanding of energy and other related
		engineering systems.
2	Developing the skills to perform the	It also provides students a feel for how
	analysis and design of	thermal sciences are applied in engineering
	thermodynamic systems	practice.
3	Developing the skills to accurately	Understand the laws of thermodynamics
	articulate thermodynamic issues	and their significance
	using proper thermodynamic	
	concepts	
4	To understand basic thermodynamic	Apply the principles of thermodynamic for
	principles and laws	the analysis of thermal systems
5	To develop the skills to analyze and	Recognize the relations exhibited in
	design thermodynamic systems.	thermodynamics.
6		Select materials for applications as per their
		thermal properties.

13.108: BASIC ELECTRICAL & ELECTRONICS ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To impart a basic knowledge in	Gain preliminary knowledge in basic
	Electrical Engineering with an	concepts of Electrical Engineering.
	understanding of fundamental	
	concepts.	
2	To impart the basic knowledge about	Discuss the working of various dc and ac
	the Electric and Magnetic circuits.	machines
	To inculcate the understanding	To predict the behavior of any electrical and
	about the AC fundamentals.	magnetic circuits.
4	To understand the working of	To identify the type of electrical machine
	various Electrical Machines.	used for that particular application.
5		To wire any circuit depending upon the
		requirement.
6		Understand working principle of various
		analogue electrical measuring instruments.

13.109: BASIC COMMUNICATION AND INFORMATION

ENGINEERING COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To get basic idea about types,	Student can identify the active and passive
	specification and common values of	electronic components.
	passive components.	
2	To familiarise the working and	Student can setup simple circuits using
	characteristics of diodes transistors,	diodes, transistors and other electronic
	MOSFET and some measuring	components.
	instruments.	
	To understand working of diodes in	Student will get fundamental idea about
	circuits and in rectifiers.	basic communication and entertainment
		electronics.
4	To understand the concept of mobile	Student will get fundamental idea about
	networks.	mobile operation.
5	To get basic idea about types,	Student will get fundamental idea about
	specification and common values of	different electronic circuits.
	passive components.	
6		Student can identify the active and passive

	electronic components.

13.110: MECHANICAL ENGINEERING WORKSHOP COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The Engineering Workshop Practice	Student will be able to make various joints
	for engineers is a training lab course	in the given object with the available work
	spread over entire	material.
	semester.	
2	The modules include training on	Student will be able to know how much time
	different trades like Fitting,	a joint will take for the assessment of time
	Carpentry, etc which makes the	
	students to learn how various joints	
	are made using wood and	
	other metal pieces.	
	Familiarization of basic	Knowledge achieved to explain the various
	manufacturing hand tools and	manufacturing process in the basic
	equipment like files, hacksaw,	mechanical engineering workshop sections-
	spanner chisel hammers, etc.	smithy, carpentry, assembling, welding
		etc.
4	Familiarization of various measuring	Identify the various hand tools used in the
	devises like vernier height gauge,	basic mechanical engineering workshop
	vernier caliper, micrometer, steel	sections-smithy, carpentry, assembling,

	rule etc.	welding etc.
5		Able to choose different measuring devises
		according to the work.
6		Skill achieved to construct models by using
		basic mechanical workshop sections like
		welding, moulding, smithy, carpentry etc.

13.111: ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To enable the student to have the	On successful completion of this course the
	practical skills for Electrical wiring	student will have fundamental ideas about
	and basic awareness of safety	the electrical and electronic circuit, and will
	measures.	be able to apply safety practices to avoid
		accidents.
2	To impart fundamental knowledge in	Familiarity with supply arrangements and
	the use of electronic components to	their limitations, knowledge of standard
	set up circuits by soldering and	voltages and their tolerances, safety aspects
	testing them.	of electrical systems and importance of
		protective measures in wiring systems.
3	The objective of this course is to	Knowledge about the types of wires, cables
	familiarize the students with	and other accessories used in wiring.
	commonly used components,	Creating awareness of energy conservation
	accessories and measuring	in electrical systems.
	equipment in Electrical installations.	
4	The course also provides hands	Students should be able to wire simple
	on experience in setting up of simple	lighting circuits for domestic buildings,
	wiring circuits	distinguish between light and power
I	I	I

		circuits.
5	This course gives the basic	To measure electrical circuit parameters
	introduction of electronic hardware	and current, voltage and power in a circuit.
	systems and provides hands-on	
	training with familiarization,	
	identification, testing, assembling,	
	dismantling, fabrication and	
	repairing such systems by making	
	use of the various tools and	
	instruments available in the	
	Electronics Workshop	
6		Familiarity with backup power supply in
		domestic installation

2013-2014

Even Semester

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S8

MECHANICAL

08.801: ENERGY MANAGEMENT COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Familiarizing with management,	Understanding basics of demand side
	especially with management in	management and mechanisms (technical,
	energy sector engineering.	legal or financial) that influence
		energy consumption.
2	Fundamentals of product strategy	Recognizing opportunities for increasing
	management.	rational use of energy.
3	Describe energy supply pressures	Learning the basics of energy auditing with
	and government actions	application on different sectors.
4	Explain effective energy	
	management as a multi-dimensional	
	activity	
5	Studying methods of energy	
	accounting and energy auditing in	
	energy sector, industry and final	

	consumption.	
6	Finding opportunities to increase the	
	rational use of energy.	

08.802: INDUSTRIAL ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Apply engineering principles to the	An ability to select and apply the
	work environment	knowledge, techniques, skills, and
		modern tools of the discipline to
		broadly-defined engineering technology
		activities
2	Use quality tools and data to anticipate	An ability to select and apply a
	and solve issues in the engineering	knowledge of mathematics, science,
	process	
		engineering, and technology to
		engineering technology problems that
		require the application of principles and
		applied procedures or methodologies
3	Work collaboratively	An ability to conduct standard tests and
		measurements; to conduct, analyze, and
		interpret experiments; and to apply
		experimental results to improve
		processes

4	Be employed as a practicing engineer in	An ability to design systems,
	fields such as design, research,	components, or processes for
	development, testing, manufacturing,	
		broadly-defined engineering
	operations and service systems	
		technology problems appropriate to
		program educational objectives
5	Assume positions of leadership and	An ability to function effectively as a
	responsibility within an organization	Member or leader on a technical team
6		An ability to identify, analyze, and solve
		broadly-defined engineering technology
		problems

08.803: AUTOMOBILE ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The anatomy of the automobile in	Identify the different parts of the
	general	automobile
2	The location and importance of each	Explain the working of various parts like
	part	engine, transmission, clutch,
		brakes
3	The functioning of the engine and its	Describe how the steering and the
	accessories, gear box, clutch,	suspension systems operate.
	brakes, steering, axles and wheels	
4	Suspension, frame, springs and other	Understand the environmental implications
	connections	of automobile emissions
5	Emissions, ignition, controls,	Develop a strong base for understanding
	electrical systems and ventilation	future developments in the
		automobile industry
6		

08.804: COMPUTER INTEGRATED MANUFACTURING COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	This course aims to acquaint the	Students will develop an understanding of
	students with principles, concepts	CAD systems and graphical modeling.
	and techniques that are essential in	
	Computer Integrated	
	Manufacturing.	
2	Understanding of the scope,	Students will get acquainted with data bases
	principles, norms, accountabilities	and numerical analysis related to CIM
	and bounds of contemporary	
	engineering practice in the specific	
	discipline	
3	Application of established	Students will have understanding of
	engineering methods to complex	Computer
	engineering problem solving	Aided Manufacturing (CAM) systems
4	Fluent application of engineering	Students will have an introduction to
	techniques, tools and resources	Computer
		Aided Process Planning (CAPP) Systems,
		Robotic

	Systems, Group Technology and Cellular
	Manufacturing Systems
5	Students will cultivate understanding about
	Automated Material Handling Systems,
	Automated
	Inspection System
6	

08.805: FACILITIES PLANNING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide understanding of the	At the end of the course students will be able
	overall facilities planning process	to Assess the value of facility planning on
		the strategy of a firm
2	To educate product, process and	Develop a systematic plant layout
	schedule design and their effects	
	on the facility layout	
3	To introduce concepts of material	Discuss the environmental and economical
	handling and safety in industries.	aspects in facilities planning.
4	To Create Awareness on the concepts	
	of designing of industrial layout	
5		
6		

08.806: FLEXIBLE MANUFACTURING METHODS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To give elementary ideas of	After completion of this course the students
	automation in industries	will be able to Employ automation in a
		manufacturing environment
2	To develop NC programming skills	Describe the fundamentals of NC technology
3	To provide an overview of features of	Design an automated system to meet defined
	robotics.	operational specifications
4	To Create Awareness on the concepts	Acquire knowledge of industrial robotics
	of simulation	and Flexible Manufacturing Systems
5		Identify and distinguish the different
		components and interfaces in a Flexible
		manufacturing System.
6		Able to know about the design of an FMS
		system

08.807: INDUSTRIAL SEMINAR COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The main objective of this course is	Acquire the basic skills to perform
	to provide experience in	literature survey and present papers
	presentations and to improve their	
	communication skills.	
2		Acquire communication skills
4		
5		
6		
13.808: PROJECT, VIVA-VOCE AND INDUSTRIAL VISIT COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To do a detailed study on a selected	Acquire the basic skills to perform
	topic based on current journals or	literature survey and present papers
	published papers.	
2	To impart the ability to perform as	Acquire communication skills and improve
	an individual as well as a team	their leadership quality as well as the ability
	member in completing a project	to work in groups.
	work.	
3		
4		
5		
6		

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S6

MECHANICAL

08.601: METROLOGY & INSTRUMENTATION COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To understand the basic principles of	To know about quality control and quality
	measurements.	assurances.
2	To learn the various linear and	To design a sensors and transducers used
	angular measuring equipments, their	for measurements.
	principle of operation and	
	applications.	
3	To learn about various methods of	To understand the importance of quality in
	measuring Mechanical parameters.	engineering products.
4		
5		
6		

08.602: DYNAMICS OF MACHINES COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To impart knowledge on force	Develop the design and practical problem
	analysis of machinery,	solving skills in the area of mechanisms
2	To impart knowledge on	The students will be able to perform
	balancing of rotating and	dynamic force analysis
	reciprocating masses	
3	To impart knowledge on	The students will be able to design fly
	Gyroscopes, Energy fluctuation in	wheels
	Machines.	
4	To introduce the fundamentals	The students will be able to design
	in vibration, vibration analysis	governors.
	of single degree of freedom	The students will be able to analyze
	systems.	gyroscopic effect in various real world
		problems
5	To understand the physical	The students will be able to perform
	significance and design of vibration	dynamic balancing of rotating as well as
	systems with desired conditions	reciprocating parts of machines.
6		Understand the basics of vibration
		and apply the concepts in design

	problems of mechanisms.

08.603: COMPUTER AIDED DESIGN COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To equip students with fundamentals	Students successfully completing this course
	of computer aided design and to	are expected to have basic knowledge in
	provide elementary algorithms in	computer aided design, capability to
	computer graphics and finite element	prepare fundamental graphics algorithms
	analysis for basic engineering	and solve basic structural problems using
	problems	finite element method.
2	To introduce the student to the basic	Be able to use a commercial CAD/CAM
	tools of computer-aided design	software package as an engineering tool
	(CAD) and computer-aided	
	manufacturing (CAM).	
3	To expose the student to	Integrate the role of graphic communication
	contemporary computer design tools	in the engineering design process
	for aerospace and mechanical	
	engineers.	
4	To prepare the student to be an	Generate and interpret engineering
	effective user of a CAD/CAM system.	technical drawings of parts and assemblies
1	1	

	according to engineering design standards.
5	Use CAD software to generate a computer model and technical drawing for a simple, well-defined part or assembly.
6	

08.604: HEAT AND MASS TRANSFER COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To introduce a basic study of the	Understand the basic laws of heat transfer.
	phenomena of heat and mass	
	transfer, to develop methodologies	
	for solving a wide variety of practical	
	engineering problems,	
2	To apply analytical and numerical	Apply principles of heat and mass transfer
	methods to solve conduction	to basic engineering systems
	problems.	
3	To combine thermodynamics and	Demonstrate general knowledge of heat
	fluid mechanics principles to analyze	transfer [conduction, convection, radiation],
	heat convection processes.	and general knowledge of mass transfer
		[molecular diffusion, convection].
4	To provide useful information	Analyse the performance and design of heat
	concerning the performance and	exchangers.
	design complex heat transfer	
1		I

	applications, such as heat exchangers and fins	
5	To integrate radiation aspects into real-world global heat transfer problems.	Design heat and mass transfer processes and equipment
6		

08.605: DESIGN OF MACHINE ELEMENTS I COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide basic knowledge on the	demonstrate the fundamentals of stress
	design considerations and	analysis and theories of failure in the design
	methodology of various machine	of machine components.
	elements.	
2	At the end of this course, students will	make proper assumptions with respect to
	be able to formulate and analyze	material, factor of safety, static and
	stresses and strains in machine	dynamic loads for various machine
	elements and structures in 3-D	components.
	subjected to various loads	
3	At the end of this course, students will	Be able to analyze the stress and strain on
	be able to do tolerance analysis and	mechanical components; and understand,
	specify appropriate tolerances for	identify and quantify failure modes for
	machine design applications	mechanical parts
4	At the end of this course, students will	Demonstrate knowledge on basic machine
	be able to apply multidimensional	elements used in machine design; design
	static failure criteria in the analysis	machine elements to withstand the loads
	and design of mechanical components	and deformations for a given application,
		while considering additional specifications.

5	To develop an ability to design a system, component, or process to meet desired needs within realistic constraints.	Be able to approach a design problem successfully, taking decisions when there is not a unique answer.
6		Be proficient in the use of software for analysis and design.

08.606: NEW ENERGY SYSTEMS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide an overview of various	To explain the use of newer energy sources
	energy sources and its applications.	and their applications.
2	To aware about the need of newer	To design and develop various bio-gas
	energy sources to meet the extending	plants
	demands.	
3	To understand the theories and	To understand the various practical fuel
	principles behind various energy	cells
	systems.	
4		
5		
6		

08.607: COMPUTER AIDED MODELLING & ANALYSIS LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To train the students in Solid	At the end of the course, students shall be
	Modelling and Assembly of machine	able to understand various phases in
	parts.	engineering design process through
		modelling, assembly and finite element
		analysis.
2	To practice finite element approach	
	in the design of engineering systems.	
3		
4		
5		
6		

08.608: MACHINE TOOLS LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To acquaint with milling machines,	At the end of the course, the students will be
	grinding machines and drilling	familiar with the various operations using
	machines and to impart training on	milling machines, grinding machines,
	these machines.	drilling machines and CNC machines.
2	To acquaint with CNC machines and	Students will be able to develop practical
	to impart training on these machines.	knowledge in advanced machine tools like
		Shapping machine, Milling machine etc
3	To introduce the students to various	Students will be able to apply fundamental
	welding techniques.	knowledge and principles in material
		removal processes
4		Ability to develop fundamental knowledge
		in indexing process for manufacturing gears
		and cutting slots
5		Students will create models using Milling,
		Shapping and Slotting processes as per the
		design
6		

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S4

MECHANICAL

08.401: ENGINEERING MATHEMATICS III COURSE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To introduce the basic notion in	After successful completion of this course,
	complex analysis such as Analytic	the students will be able to use numerical
	Functions, Harmonic functions and	methods to solve problems related to
	their applications in fluid mechanics	engineering fields.
	and differentiations and integration	
	of complex functions,	
	transformations and their	
	applications in engineering fields.	
2	Numerical techniques for solving	This course helps students to master the
	differential equations are also	basic concepts of complex analysis which
	introduced as a part of this course.	they can use later in their career.
3		
4		

5	
6	

08.402: COMPUTER PROGRAMMING AND NUMERICAL METHODS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To equip students with fundamentals	Students successfully completing this course
	of computer programming and to	are expected to have capability to prepare
	provide fundamental idea about the	fundamental computer programs and
	use of computer programming and	programs for numerical solutions for basic
	numerical methods for analyzing the	engineering problems like system of
	basic engineering problems	equations and heat equations.
2	To introduce the students about	The students will be able to write algorithms
	fundamentals of computers,	and corresponding flowcharts.
	introduction to algorithms and	
	flowcharts, basic computer	
	programming concept	
3	Introduction control statements,	The students will be able to write computer
	arrays and functions	programs using arrays.
4	Basics pointers, introduction to Class	The students will be able to write
	and Object	application level computer programs using
		pointers and function.
5	Concepts of errors and	The students will be able to write
	approximations, curve fitting,	application level computer programs using

	Solution of Partial differential	object oriented features.
	equations, Numerical problems and	
	preparation of computer programs.	
6		The students will be able to write computer
		programs for numerical solutions for
		engineering problems like system of
		equations and heat equations.

08.403: METALLURGY AND MATERIAL SCIENCE COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To impart knowledge on engineering	The property classifications of materials
	materials, deformation of materials,	that determine their applicability.
	equilibrium diagrams of selected	
	alloy systems, heat treatment of	
	steels, properties of steels, cast iron	
	and other alloys and their	
	applications.	
2	To provide fundamental science	The mechanisms of elastic and plastic
	relevant to materials.	deformations and thereby be able to modify
		the mechanical properties of materials.
3	To provide physical concepts of	Heat treatment processes and how to select
	atomic radius, atomic structure,	suitable heat treatments for specific
	chemical bonds, crystalline	applications.
	and non-crystalline materials and	
	defects of crystal structures, grain	
	size, strengthening mechanisms,	
	heat treatment of metals with	
I	1	I I

	mechanical properties and changes	
	in structure.	
4	To enable students to be more aware	Different failure mechanisms and thereby
	of the behavior of materials in	how to decide steps to avoid failures.
	engineering applications and select	
	the materials for various engineering	
	applications.	
5	To understand the causes behind	Different alloy systems and their
	metal failure and deformation.	applications, so that proper selection of
		material can be made.
6	To determine properties of unknown	Newer engineering materials like
	materials and develop an awareness	Composites, smart materials,
	to apply this knowledge in material	nanomaterials.
	design.	

08.404: MANUFACTURING PROCESS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The subject will enable the students	The students will understand the various
	to understand the basic	aspects of moulding, casting, forming and
	manufacturing process of	welding.
	engineering materials and products	
	including the modern manufacturing	
	methods.	
2	Understand modern manufacturing	The students will be able to identify the
	operations, including their	features of different manufacturing
	capabilities, limitations, and how to	processes and to select suitable process for a
	design for lowest cost.	specific material.
3	Gain insight into how designers	Explain the difference between industrial
	influence manufacturing schedule	and engineering design with reference to
	and cost.	familiar products; and for specific products
		explain whether it is the product's form or
		its function that enhances its value in the
		marketplace
4	Learn how to analyze products and	Understand the concept of a product design
	be able to improve their	specification (PDS), and be able to indicate

	manufacturability and lower costs.	some to the factors which should be
		included in producing one. Describe the role
		of marketing in developing the PDS for a
		product
5	Understand the relationship between	Classify products simply in terms of their
	customer desires, functional	basic shape
	requirements, product materials,	
	product design, and manufacturing	
	process selection	
6		Describe the difference between the hot and
		cold working of metals and give the
		advantages of each

08.405: THERMAL ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide the students with a	After the completion of this course, students
	elementary ideas of applications of	will get knowledge in the areas of engines,
	thermodynamics in engineering	Gas turbine for a complete understanding of
		energy and other related engineering
		systems.
2	Be able to have the basic concepts of	It also provides students a feel for how
	thermal sciences and their	thermal sciences are applied in engineering
	application to in formulating the	practice.
	thermal engineering problems.	
3	Have a good understanding of first	Define the basic concepts of units and
	and second laws of thermodynamics	dimensions, systems(open and closed
	and will be in	systems and control volumes) and its
		boundaries, properties, state, process, cycle,
		quasi-static process etc required as
		foundation for development of principles
		and laws of thermodynamics
4	Be in a position to check the	The students will be able to design I. C.
	feasibility of proposed processes and	Engines depending upon the requirements.

	cycles using the ideas of second law of thermodynamics and entropy.	
5	Have the understanding of basic principles of heat transfer and related simple problems	They also will be able to do final year project on such highly demanding subject area
6		

08.406: MACHINE DRAWING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide general overview on fits	Students will be able to understand Linear
	and tolerance	tolerance.
2	To familiarize modeling softwares	Students will be able to understand
		Geometric tolerance.
3	To equip the students to prepare	Students will be able to prepare detailed
	assembly and working drawings	drawing of machine parts with fits and
	of machine components.	tolerance.
4		Students will be able to prepare assembly
		drawings.
5		Students will be able to prepare part
		drawings from assembly drawings
6		At the end of the course, Students will be
		able to prepare detailed drawing of machine
		parts with fits and tolerances.

08.407: FLUID MECHANICS & MACHINES LAB COURSE

SI.	Course Objectives	Subject Learning Outcomes or
		Subject Learning Outcomes of
No.		Course Outcomes
		On completion of course the
		On completion of course the
		students will be able to:
1	To provide practical knowledge in	To provide the students with a solid
	verification of principles of fluid	foundation in fluid flow principles.
	flow	
	10.	
2	To impart knowledge in measuring	To provide the students knowledge in
	pressure, discharge and velocity of	calculating performance analysis in turbines
	fluid flow.	and pumps and can be used in power plants.
3	To understand Major and Minor	Students can able to understand to analyze
	Losses.	practical problems in all power plants and
		chemical industries.
4	To gain knowledge in performance	Conduct experiments (in teams) in pipe
	testing of Hydraulic Turbines and	flows and open-channel flows and
	Hydraulic Pumps at constant speed	interpreting data from model studies to
	and Hood	nrototyma assas
		prototype cases.
5		Analyze a variety of practical fluid-flow
		devices and utilize fluid mechanics
		principles in design.

6	Given the required flow rate and pressure
	rise, select the proper pump to optimize the
	pumping efficiency.

08.408: IC ENGINES LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To study the various types IC	Determine the efficiency and plot the
	engines and their parts	characteristic curves of different types of
		Internal Combustion engines.
2	To conduct the performance test on	Conduct experiments for the determination
	IC engines	of viscosity, calorific value etc of petroleum
		products.
3	To familiarize equipment used for	Recognize and understand reasons for
	measuring viscosity, flash and fire	differences among operating characteristics
	point and Calorific value of	of different engine types and designs
	petroleum products	
4		Given an engine design specification, predict
		performance and fuel economy trends with
		good accuracy
5		Learn to compare and contrast
		experimental results with theoretical trends,
		and to attribute observed discrepancies to
		either measurement error or modeling

	limitations
6	Through the use of both theoretical
	techniques and experimentation, develop an
	appreciation for theoretical and practical
	limits to engine performance and fuel
	economy