2016-2017 MECHANICAL ENGINEERING

2016-2017

Odd semester

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S7

MECHANICAL

13.701: PRINCIPLES OF MANAGEMENT AND DECISION MODELING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Examination of management theory	Evaluate the global context for taking
	and provide opportunities for	managerial actions of planning, organizing
	application of these ideas in real	and controlling.
	world situations.	
2	This examination focuses on the	Assess global situation, including
	managerial functions of Assessing,	opportunities and threats that will impact
	Planning, Organizing, and	management of an organization.
	Controlling.	
	Both traditional and cutting-edge	Integrate management principles into
	approaches are introduced and	management practices.
	applied.	
4	Specific attention is paid throughout	Assess managerial practices and choices
	the course to the ethical implications	relative to ethical principles and standards.
	of managerial action and inaction.	Specify how the managerial tasks of
		planning, organizing, and controlling can be

	executed in a variety of circumstances.
5	Determine the most effective action to take in specific situations.
	in specific situations.
6	Evaluate approaches to addressing issues of
	diversity.

13.702: MECHATRONICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Have a strong foundation in science	Employ the knowledge of mathematics,
	and focus in mechanical, electronics,	science, and engineering.
	control, software, and computer	
	engineering, and a solid command of	
	the newest technologies.	
2	Be able to design, analyze, and test	Design and conduct experiments to evaluate
	"intelligent" products and processes	the performance of a mechatronics system
	that incorporate	or component with respect to specifications,
	appropriate computing tools,	as well as to analyze and interpret data.
	sensors, and actuators.	
3	Be able to demonstrate professional	Design mechatronics component, system or
	interaction and communicate	process to meet desired needs.
	effectively with team members.	
4	Be able to work efficiently in	Define and solve engineering problems.
	multidisciplinary teams.	
5	Be prepared for a variety of	Use the techniques, skills, and modern
	engineering careers, graduate	mechatronics engineering tools necessary
	studies, and continuing	for engineering practice.

	education	
6	Practice professional and ethical	Function effectively as members of
	responsibility, and, be aware of the	multidisciplinary teams.
	impact of their designs on human-	
	kind and the environment.	

13.703: GAS DYNAMICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To familiarize with behavior of	To distinguish between various flow regimes
	compressible gas flow	
2	To understand the difference	To analyse the flow under different flow
	between subsonic and supersonic	conditions
	flow	
3	To familiarize with high speed test	To assess the flow behavior and consequent
	facilities	loads due to flow
4	To understand the basic difference	To get the knowledge about the main
	between incompressible and	properties which are used for analyzing or
	compressible flow.	modeling of compressible flow.
5	Topics to be covered include	Formulate and solve problems in one -
	conservation laws, propagation of	dimensional steady compressible flow
	disturbances, isentropic flow,	including: isentropic nozzle flow, constant
	compressible flow in ducts with area	area flow with friction (Fanno flow) and
	changes, normal and oblique shock	constant area flow with heat transfer
	waves and applications, Prandtl-	(Rayliegh flow).
	Meyer flow and applications, simple	
	flows such as Fanno flow and	
I		

	Rayleigh flow with applications to	
	nozzles, and propulsion related	
	concepts.	
6	The method of characteristics will be	• Derive the conditions for the change in
	described in one dimensional	pressure, density and temperature for flow
	unsteady isentropic flow.	through a normal
		shock.
7	The emphasis will be on the physical	Determine the strength of oblique shock
	understanding of the phenomena and	waves on wedge shaped bodies and concave
	basic analytical results.	corners.
		Determine the change in flow conditions
		through a Prandtl-Meyer expansion wave.
		Complete a numerical analysis to solve an
		unsteady one-dimensional flow problem.

13.704: REFRIGERATION & AIR-CONDITIONING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Students will learn the basic concepts	Students will demonstrate an ability to
	and principles of air conditioning	analysis psychrometric processes and cycles
	and refrigeration.	of air conditioning systems.
2	Students will learn the fundamental	Students will demonstrate an ability to
	analysis methodology of air	estimate the energy requirements of cooling
	conditioning and refrigeration.	and heat equipment for simple air
		conditioning applications.
3	Students will learn the basic process	Students will demonstrate an ability to
	and systems of air conditioning and	analysis and heat loads, particularly from
	refrigeration.	solar radiation.
4	Students will apply the course	Students will demonstrate an ability to
	knowledge to do a design project of	estimate energy requirements for simple air
	HVAC system.	conditioning processes.
5		Students will demonstrate an ability to
		apply principles of air conditioning to
		perform energy analysis of simple air
		conditioning applications.
6		Students will show an ability to apply the

13.705: DESIGN OF MACHINE ELEMENTS II COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Develop an ability to apply	Be able to analyze the stress and strain on
	knowledge of mathematics, science,	mechanical components; and understand,
	and engineering	identify and quantify failure modes for
	Outcomes	mechanical parts
2	To develop an ability to design a	Demonstrate knowledge on basic machine
	system, component, or process to	elements used in machine design; design
	meet desired needs within	machine elements to withstand the loads
	realistic constraints.	and deformations for a given application,
		while considering additional specifications.
3	To develop an ability to identify,	Be able to approach a design problem
	formulate, and solve engineering	successfully, taking decisions when there is
	problems.	not a unique answer.
4	To develop an ability to use the	Be proficient in the use of software for
	techniques, skills, and modern	analysis and design.
	engineering tools necessary	
	for engineering practice.	
5		Students attended this course are able to
		analyse and design the basic mechanical

	systems.
6	At the end of this course, students should be
	able to recognize the formation and
	calculation methods of commonly used
	machine elements.

13.706: NON-CONVENTIONAL MACHINING TECHNIQUES COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The course aims in identifying the	After completion of course, the student shall
	classification of unconventional	understand the principle of working,
	machining processes.	mechanism of metal removal in the various
		unconventional machining process.
2	To understand the principle,	The student is able to identify
	mechanism of metal removal of	the process parameters, their effect and
	various unconventional	applications of different processes.
	machining processes.	
3	To study the various process	Upon completion of this course, the students
	parameters and their effect on the	can able to demonstrate different
	component machined on various	unconventional machining processes and
	unconventional machining processes.	know the influence of difference process
		parameters on the performance and their
		applications.
4	To understand the applications of	Ability to extend, through modeling
	different processes.	techniques, the single point, multiple point
		and abrasive machining processes
5	To teach the machining surface	Estimate the material removal rate and

	finish and material removal rate	cutting force, in an industrially useful
		manner, for practical machining processes
6	To teach the mechanics and thermal	effects of tool geometry on machining force
	issues associated with chip formation	components and surface finish

13.707: THERMAL ENGINEERING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The objective of the thermal	Compute the property of fuels and
	engineering laboratory is to	lubricating oils using suitable tests.
	introduce the student the	
	fundamental theories and the	
	industrial applications of	
	thermodynamics, heat transfer, and	
	fluid mechanics.	
2	This laboratory supports the courses	Demonstrate the performance of internal
	for the undergraduate and graduate	combustion engines and air compressors.
	studies.	
3	Moreover, this laboratory also	Interpret the emission characteristics of
	supports the advanced research in	internal combustion engines.
	the area of thermal engineering, heat	
	transfer, and fluid mechanics.	
4	To provide knowledge on testing of	
	properties of fuels and lubricating	
	oils	
5	To demonstrate and conduct	
I	I	l

	experiments, interpret and analyze	
	data and report results of IC Engine	
	testing	
6		

13.708: MECHANICAL ENGINEERING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To apply various measurement	Describe the fundamental concepts in
	techniques to inspect and test	measurement methods, techniques.
	products	
2	To apply statistical tools for quality	Apply various instruments for
	assurance purpose	measurements
3	To test and evaluate various	Apply quality control tools to achieve
	components using various measuring	defects free quality products
	instruments	
4		Take precise measurements using various
		instruments.
5		Develop data for engineering analysis.
6		

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S5

MECHANICAL

13.501: ENGINEERING MATHEMATICS IV COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide a basic understanding of	After successful completion of this course,
	random variables and probability	the students will be familiar with the large
	distributions.	scale applications of linear programming
		techniques which require only a few minutes
		on the computer.
2	Mathematical programming	Also they will be familiar with the concepts
	techniques are introduced as a part	of probability distributions which are
	of this course.	essential in transportation engineering.
3	These techniques are concerned with	
	the allotment of available resources	
	so as to minimize cost or maximize	
	profit subject to prescribed	
	restrictions.	
4		

5	
6	

13.502: THEORY OF MACHINES COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To understand the layout of linkages	Able to understand basic elements of
	in the assembly of a system/machine.	mechanism
	To study the application of friction in	
	different devices.	
2	To study the principles involved in	The students will be able to perform velocity
	assessing the displacement, velocity	analysis of mechanism
	and acceleration at any point in a	
	link of a mechanism.	
3	To analyse the motion resulting from	The students will be able to perform
	a specified set of linkages in a	acceleration analysis of mechanism
	mechanism.	
4	To study the power transmission	The students will be able to perform
	devices.	dimensional synthesis of simple mechanisms
		mechanism
5		The students will be able to perform force
		analysis of belt drives
6		The students will be able to design clutch

	plate. The students will be able to perform
	analysis of gear trains

13.503: INDUSTRIAL ELECTRONICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To explain the modelling of the	Discuss Various components of Power
	power system using various	System, their characteristics and Modelling.
	methodologies.	
2	To expose to formulation of power	Draw equivalent single line reactance and
	flow problems and various numerical	impedance diagrams and per unit
	methods for solving power flow	representation of a power system
	Problems.	
	To Introduce abnormal system	Explain significance of load flow problem
	operating conditions of a power	and apply numerical techniques to obtain
	system namelysymmetrical and	Load flow solution
	unsymmetricalfaults.	
4	To Create Awareness on the concepts	Interpret the effect of symmetrical fault
	of Power system stability and their	conditions and select suitable rating for
	implications.	various protective devices in a. power
		system
5		Apply symmetrical components and solve

	unsymmetrical faults.in a power system.
6	Discuss stability classifications and calculate
	stability limits using equal area criterion
	and numerical methods.

13.504: MECHANICS OF MATERIALS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Develop the formal theory of solid	To understand the concepts of stress at a
	mechanics : the equilibrium,	point, strain at a point, and the stress-strain
	kinematic, and constitutive	relationships for linear, elastic,
	equations.	homogeneous, isotropic materials.
		To determine principal stresses and angles,
		maximum shearing stresses and angles, and
		the stresses acting on any arbitrary plane
		within a structural element.
		To draw Free Body Diagrams (FBD) for
		rigid bodies, beams, 2-D and 3-D structures,
		frames and machines, and set up
		equilibrium equations (i.e. forces and
		couples) for them.
2	Introduce the atomistic mechanisms	To discern between entropic and enthalpic
	underlying the mechanical behavior	contributions to deformation and know
	of materials.	which dominate for different types of
		materials and why.
		To employ and set up phenomenological
		models that represent molecular

		mechanisms of deformation and use those
		models to predict macroscopic mechanical
		response, e.g. the linear theory of
		viscoelasticity.
		To understand some basic relationships
		between molecular and microscopic and
		macroscopic mechanisms of deformation.
3	Instill a basic knowledge of the	To understand how statistical mechanics
	statistical aspects of mechanics of	can be employed to predict the macroscopic
	materials.	mechanical properties of polymers via the
		kinetic theory of rubber elasticity.
		To appreciate the statistical nature of
		fracture and fatigue, especially in high-
		strength, brittle materials, and to know how
		to design an acceptable level of risk for a
		particular component and application.
		To interpret and understand statistical data

		of fracture and fatigue.
4	Establish process - structure - property - performance relationships in materials engineering.	To appreciate multi-scale structure effects on material properties.
5		To learn the basics of materials selection by identifying appropriate criteria, categorizing materials and describing a range of properties available from similar materials.
6		To identify relationships between manufacturing processes and materials' behaviour and recognize the influence of composition and structure on the processing and usage of materials.

13.505: MACHINE TOOLS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The course provides students with	Apply cutting mechanics to metal machining
	fundamental knowledge and	based on cutting force and power
	principles in material removal	consumption.
	processes.	
2	In this course, the students apply the	Operate lathe, milling machines, drill press,
	fundamentals and principles of metal	grinding machines, etc.
	cutting to practical applications	
	through multiple labs using lathes,	
	milling machines, grinding machines,	
	and drill presses, Computer	
	Numerical Control etc.	
	To demonstrate the fundamentals of	Select cutting tool materials and tool
	machining processes and machine	geometries for different metals.
	tools.	
4	To develop knowledge and	Select appropriate machining processes and
	importance of metal cutting	conditions for different metals.
	parameters.	
5	To develop fundamental knowledge	Learn machine tool structures and

	on tool materials, cutting fluids and	machining economics.
	tool wear mechanisms.	
6	To apply knowledge of basic	Write simple CNC programs and conduct
	mathematics to calculate the	CNC machining.
	machining parameters for different	
	machining processes.	

13.506: NON-DESTRUCTIVE TESTING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To introduce the basic principles,	Discuss the basic principles, techniques,
	techniques, equipment, applications	equipments used in NDT
	and limitations of NDT methods.	
2	To enable selection of appropriate	The students will be able to differentiate
	NDT methods.	various defect types.
3	To identify advantages and	Ability to apply scientific and technical
	limitations of non destructive testing	knowledge to the field of non-destructive
	methods.	testing.
4	To make aware the developments	Recognition of the need and ability to
	and future trends in NDT.	engage in lifelong learning, thought process
		and development
5		Ability to use the relevant non-destructive
		testing methods for various engineering
		practice.
6		Recognize and achieve high levels of
		professionalism in their work

13.507: PRODUCTION ENGINEERING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To acquaint the basics of lathe and	At the end of the course, the students will be
	accessories, shaping and slottng	familiar with the various operations
	machine,planning machines	using lathe, shaping, slotting and planning
		machines.
2	To learn the different tools used for	Do simple machining operations.
	various operations of machines.	
3	To impart training on plane turning,	Conduct cutting force measurements.
	groove cutting, form turning, taper	
	turning,facing and thread cutting.	
4	To physically study machine tools	Know the fundamental settings of milling
	and basic machining processes like	machines and drilling machines.
	milling, grinding etc.	
5	To practice metal cutting in milling	Understand the working of gear cutting
	machines, tool-grinder machines,	mechanism and indexing.
	cylindrical grinding machines and	
	surface grinding machines.	
6	To conduct measurement of metal	Understand the machining operations like

cutting forces and understand their	grinding and planing.
importance	

13.508: ELECTRICAL & ELECTRONICS LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To give a practical knowledge on the	At the end of this course the students will be
	working of electrical machines	able to test and validate DC generators,
	including dc machines, transformers,	DC motors and Transformers.
	induction motors and synchronous	
	motors.	
2	It also gives the basics about design	Students will have the basic knowledge on
	and implementation of small	working of semiconductor devices.
	electronic circuits	
3		
4		
5		
6		

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S3

MECHANICAL

MA201: LINEAR ALGEBRA & COMPLEX ANALYSIS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Identify complex-differentiable	Determine whether a given function is
	functions	differentiable, analytic and if so find its
		derivative. To find harmonic conjugate
2	Use conformal mapping	Upon completion Conformal Mapping
		students will master concepts and theories
		of conformal mappings of simply connected
		and multiply connected domains.
3	Compute complex line integrals	Find parametrizations of curves, and
		compute complex line integrals directly.
		Use antiderivatives to compute line
		integrals. Use Cauchy's integral theorem
		and formula to compute line integral.
		Express complex-differentiable functions as
		power series.
4	Use the residue theorem.	Identify the isolated singularities of a
		function and determine whether they are

		removable, poles, or essential. Use the
		residue theorem to compute complex line
		integrals and real integrals.
5	Learn to solve systems of linear	Demonstrate ability to manipulate matrices
	equations and application problems	and to do matrix algebra. Demonstrate
	requiring them. Learn about and	ability to solve systems of linear equations.
	work with vector spaces and	Demonstrate ability to work within vector
	subspaces.	spaces and to distil vector space properties.
6	Learn to find and use eigenv alues	Find the characteristic equation, eigenvalues
	and eigenvectors of a matrix.	and corresponding eigenvectors of a given
		matrix.

ME201: MECHANICS OF SOLIDS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To acquaint with the basic concepts	Understand basic concepts of stress and
	of stress and deformation in solids.	strain in solids.
2	To practice the methodologies to	Determine the stresses in simple structural
	analyse stresses and strains in simple	members such as shafts, beams, columns etc.
	structural members, and to apply the	and apply these results in simple design
	results in simple design problems.	problems.
3	To study about shear force and	Determine principal planes and stresses,
	bending moment of beams loaded in	and apply the results to combined loading
	different conditions.	case.
4		
5		

ME 203: MECHANICS OF FLUIDS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To study the mechanics of fluid	Calculate pressure variations in accelerating
	motion.	fluids using Euler's and Bernoulli's
		equations
2	To establish fundamental knowledge	Become conversant with the concepts of
	of basic fluid mechanics and address	flow measurements and flow through pipes
	specific topics	
	relevant to simple applications	
	involving fluids	
3	To familiarize students with the	Apply the momentum and energy equations
	relevance of fluid dynamics to many	to fluid flow problems.
	engineering systems	
4		Evaluate head loss in pipes and conduits.
5		Use dimensional analysis to design physical
		or numerical experiments and to
		apply dynamic similarity

ME205: THERMODYNAMICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To understand basic thermodynamic principles and laws	Understand the laws of thermodynamics and their significance
2	To develop the skills to analyze and design thermodynamic systems.	Apply the principles of thermodynamic for the analysis of thermal systems
3	To enable students to be more aware of the behavior of materials in engineering applications and select the materials for various engineering applications based on their thermal properties.	Understand the applications of thermodynamics
4	To understand the thermal devices completely	Recognize the relations exhibited in thermodynamics.
5	To determine thermal properties of	Select materials for applications as per their

dynamics to
dy

ME210: METALLURGY AND MATERIALS ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To provide fundamental science	Identify the crystal structures of metallic
	relevant to materials.	materials.
2	To provide physical concepts of	Analyze the binary phase diagrams of
	atomic radius, atomic structure,	alloys Fe-Fe3C, etc.
	chemical bonds, crystalline and	
	non-crystalline materials and	
	defects of crystal structures, grain	
	size, strengthening mechanisms,	
	heat treatment of metals with	
	mechanical properties and changes	
	in structure.	
3	To enable students to be more	Correlate the microstructure with
	aware of the behavior of materials	properties, processing and performance of
	in engineering applications and	metals.
	select the materials for various	

	engineering applications.	
4	To understand the causes behind metal failure and deformation.	Recognize the failure of metals with structural change.
5	To determine properties of unknown materials and develop an awareness to apply this knowledge in material design.	Select materials for design and construction.
6		Apply core concepts in materials science to solve engineering problems.

HS210: LIFE SKILLS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To develop communication	Communicate effectively.
	competence in prospective engineers.	
2	To enable them to convey thoughts	Make effective presentations.
	and ideas with clarity and focus. To	
	develop report writing skills.	
	To equip them to face interview &	Write different types of reports.
	Group Discussion.	
4	To inculcate critical thinking	Face interview & group discussion
	process.	
5	To prepare them on problem solving	Critically think on a particular problem.
	skills.	
6	To provide symbolic, verbal, and	Handle Engineering Ethics and Human
	graphical interpretations of	Values.
	statements in a problem description.	

ME231: COMPUTER AIDED MACHINE DRAWING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To introduce students to the basics	Acquire the knowledge of various standards
	and standards of engineering	and specifications about standard machine
	drawing related to machines and	components.
	components.	
2	To teach students technical skills	Make drawings of assemblies with the help
	regarding assembly, production and	of part drawings given.
	part drawings.	
3	To familiarize students with various	Ability to select, configure and synthesize
	limits, fits and tolerances.	mechanical components into assemblies.
4	To help students gain knowledge	Apply the knowledge of fits and tolerances
	about standard CAD packages on	for various applications.
	modeling and drafting.	
5		Able to model components of their choice
		using CAD software.
6		Get exposure to advanced CAD packages.

CE230: MATERIAL TESTING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide knowledge on mechanical	Acquire the knowledge on mechanical
	behaviour of materials	behaviour of materials
2	To acquaint with the experimental	Conduct experiments determine the
	methods to determine the mechanical	mechanical properties of materials.
	properties of materials.	

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S1

MECHANICAL

MA 101: CALCULUS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To give the definition of an infinite	Evaluate the limit of a sequence of numbers
	series and explain what is meant by	(infinite series) and determine whether the
	the sequence of partial sums. Relate	series converges.
	the convergence or divergence of the	
	series to the sequence of partial	
	sums.	
2	Compute partial derivatives of	Understand the meaning of partial
	functions of several variables. Apply	derivatives and calculate partial derivatives.
	the theorem on mixed partial	
	derivatives.	
3	Use concepts of calculus to the model	Compute dot product, cross product, length
	real-world problems	of vectors. Compute partial derivatives,
		derivatives of vector-valued functions,
		gradient functions.

4	Evaluate volumes of bounded solids	To change a double integral to polar co
	and areas of bounded regions by	ordinate. Compute (relatively simple) triple
	using the ideas of double and triple	integrals
	integrals.	
5	Apply the concept of line integral to	Determine if a vector field is conservative
	work and circulation. Know the	and find a potential function if conservative.
	definition and properties of	Evaluate line integrals in the plane and in
	conservative vector fields and their	space, including line integrals of vector
	relationship to gradient fields.	fields.
6		

PH100: ENGINEERING PHYSICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Dynamics of mechanical and	Solve for the solutions and describe the
	electrical oscillation using Fourier	behavior of a damped and driven harmonic
	series and integrals; time and	
		oscillator in both time and frequency
	frequency representations for driven	
		domains. Damped and Forced Oscillations
	damped oscillators, resonance; one-	
		oscillating system problems.
	dimensional waves in classical	
	mechanics and electromagnetism;	
	normal modes.	
2	The fundamental principles of	Define and explain the propagation of light
	photonics that complement the topics	in conducting and non-conducting media.
	in the optics and laser courses and to	
	help students develop problem-	
	solving skills applicable to real-world	
	photonics problems.	
3	Introduce basic concepts and	Define and explain the physics governing

	principles of acoustics.	laser behaviour and light matter interaction
		ting and non-conducting media.
4		Apply wave optics and diffraction theory to
		a range of problems
5		Explain and calculate the physical effects of
		acoustic reflections, absorption, scattering,
		diffusion, diffraction, and propagation
		losses.
6		Use advanced theoretical, numerical, and
		experimental techniques to model and
		analyze acoustical elements in musical
		instruments, the human voice, room
		acoustics, and audio.

BE100: ENGINEERING MECHANICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To apply the principles of mechanics	Understand the fundamental concepts of
	to practical engineering problems.	mechanics.
2	To identify appropriate structural	Students would be able to apply and
	system for studying a given problem	demonstrate the concepts of resultant and
	and isolate it from its environment.	equilibrium of force system.
3	To develop simple mathematical	Students would be able to determine the
	model for engineering problems and	properties of planes and solids.
	carry out static analysis.	
4	To develop simple mathematical	Understand the concepts of moment of
	model for engineering problems and	inertia.
	carry out static analysis.	
5		Students would be able to apply
		fundamental concepts of dynamics to

	practical problems.
6	Understand the basic elements of vibration.

BE 101-02: INTRODUCTION TO MECHANICAL ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To introduce different disciplines of	Enable students to distinguish different
	Mechanical Engineering.	processes around them by applying
		knowledge in thermodynamics.
2	To kindle interest in Mechanical	To explain the working of different
	Engineering.	energy conversion devices.
3	To impart basic mechanical	To differentiate between refrigeration
	engineering principles.	and air conditioning devices and describe
		their working.
4		To recognize different parts of an
		automobile and explain their working.
5		To enumerate various engineering materials
		used in manufacturing industries.
6		Indicate the appropriate manufacturing
		method for production.

BE 103: INTRODUCTION TO SUSTAINABLE ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To have an increased awareness	Able to appreciate and explain the different
	among students on issues in areas of	types of environmental pollution problems
	sustainability.	and their sustainable solutions
2	To have an insight into global	To be aware of problem related to global
	environmental issues.	environmental issues
3	To establish a clear understanding of	Able to apply the concepts of sustainability
	the role and impact of various	in their respective area of specialization
	aspects of engineering and	
	engineering decisions on	
	environmental, societal, and	
	economic problems.	
4	Tounderstandtheroleof	To understand the need of waste disposal
	engineering in achieving sustainable	and management
	world	
5		
6		

EC 100: BASICS OF ELECTRONICS ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To get basic idea about types,	Student can identify the active and passive
	specification and common values of	electronic components.
	passive components.	
2	To familiarise the working and	Student can setup simple circuits using
	characteristics of diodes transistors,	diodes, transistors and other electronic
	MOSFET and some measuring	components.
	instruments.	
3	To understand working of diodes in	Student will get fundamental idea about
	circuits and in rectifiers.	basic communication and entertainment
		electronics.
4	To understand the concept of mobile	Student will get fundamental idea about
	networks.	mobile operation.
5		Student will get fundamental idea about
		different electronic circuits.

PH 103: ENGINEERING PHYSICS LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Competency in an engineering or	An ability to apply knowledge of
	science profession via promotion to	mathematics, science, and engineering.
	positions of increasing responsibility,	
	publications, and/orconference	
	presentations.	
2	Adaptability to new developments in	An ability to design and conduct
	science and technology by	experiments, as well as to analyze and
	successfully completing or pursuing	interpret data.
	graduate education in engineering or	
	related fields, or participating in	
	professional development and/or	
	industrial training courses.	
3		An ability to identify, formulate, and solve
		engineering problems
4		Understanding of professional and ethical
		responsibility

5	The broad education necessary to
	understand the impact of engineering
	solutions in a global, economic,
	environmental, and societal context
6	A recognition of the need for, and an ability
	to engage in life-long learning

EC 110 ELECTRONICS ENGINEERING WORKSHOP COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To gives the basic introduction of	Students can identify the active and passive
	electronic hardware systems.	electronic components.
2	To provide hands on training with	Students get hands on assembling,
	familiarization, testing, assembling.	dismantling and repairing systems.
3	To develop knowledge of electrical	Drawing of electronic circuit diagrams using
	wiring and electronic circuits.	BIS/ IEEE symbols.
4	To use the various tools and	Testing of electronic components (Resistor,
	instruments available in the	Capacitor, Diode)
	Electronic Workshop.	
5		Assembling of electronic circuit / system on
		general purpose PCB.
6		

ME 110: MECHANICAL WORKSHOP COURSE

Course Objectives	Subject Learning Outcomes or
	Course Outcomes
	On completion of course the
	students will be able to:
Introduction to basic manufacturing	Knowledge achieved to explain the various
process like welding, moulding,	manufacturing process in the basic
fitting, assembling, smithy, carpentry	mechanical engineering workshop sections-
works etc.	smithy, carpentry, assembling, welding
	etc.
Familiarization of basic	Identify the various hand tools used in the
manufacturing hand tools and	basic mechanical engineering workshop
equipment like files, hacksaw,	sections-smithy, carpentry, assembling,
spanner chisel hammers, etc.	welding etc.
Familiarization of various measuring	Able to choose different measuring devises
devises like vernier height gauge,	according to the work.
vernier caliper, micrometer, steel	
rule etc.	
Demonstration and study of various	Ability to name and summarise the
machine tools like lathe, drilling	operations of various machine tools like
machine, milling machine etc.	lathe, milling, drilling and shaping
	Introduction to basic manufacturing process like welding, moulding, fitting, assembling, smithy, carpentry works etc. Familiarization of basic manufacturing hand tools and equipment like files, hacksaw, spanner chisel hammers, etc. Familiarization of various measuring devises like vernier height gauge, vernier caliper, micrometer, steel rule etc. Demonstration and study of various machine tools like lathe, drilling

		machines.
5	Familiarizing the disassembling and	Knowledge achieved to disassemble and
	assembling of machine parts.	assemble the machine like IC engines.
6		Skill achieved to construct models by using
		basic mechanical workshop sections like
		welding, moulding, smithy, carpentry etc.

2016-2017

Even Semester

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S8

MECHANICAL

13.801: ENERGY MANAGEMENT COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Familiarizing with management,	Understanding basics of demand side
	especially with management in	management and mechanisms (technical,
	energy sector engineering.	legal or financial) that influence
		energy consumption.
2	Fundamentals of product strategy	Recognizing opportunities for increasing
	management.	rational use of energy.
3	Describe energy supply pressures	Learning the basics of energy auditing with
	and government actions	application on different sectors.
4	Explain effective energy	
	management as a multi-dimensional	
	activity	
5	Studying methods of energy	
	accounting and energy auditing in	
	energy sector, industry and final	

	consumption.	
6	Finding opportunities to increase the	
	rational use of energy.	

13.802: INDUSTRIAL ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Apply engineering principles to the	An ability to select and apply the
	work environment	knowledge, techniques, skills, and modern
		tools of the discipline to
		broadly-defined engineering technology
		activities
2	Use quality tools and data to	An ability to select and apply a knowledge
	anticipate and solve issues in the	of mathematics, science, engineering, and
	engineering process	technology to engineering technology
		problems that require the application of
		principles and applied procedures or
		methodologies
3	Work collaboratively	An ability to conduct standard tests and
		measurements; to conduct, analyze, and
		interpret experiments; and to apply
		experimental results to improve processes
4	Be employed as a practicing engineer	An ability to design systems, components, or
	in fields such as design, research,	processes for
	development, testing, manufacturing,	broadly-defined engineering

	operations and service systems	technology problems appropriate to
		program educational objectives
5	Assume positions of leadership and	An ability to function effectively as a
	responsibility within an organization	Member or leader on a technical team
6		An ability to identify, analyze, and solve
		broadly-defined engineering technology
		problems

13.803: AUTOMOBILE ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The anatomy of the automobile in	Identify the different parts of the
	general	automobile
2	The location and importance of each	Explain the working of various parts like
	part	engine, transmission, clutch,
		brakes
3	The functioning of the engine and its	Describe how the steering and the
	accessories, gear box, clutch,	suspension systems operate.
	brakes, steering, axles and wheels	
4	Suspension, frame, springs and other	Understand the environmental implications
	connections	of automobile emissions
5	Emissions, ignition, controls,	Develop a strong base for understanding
	electrical systems and ventilation	future developments in the
		automobile industry
6		

13.804: COMPUTER INTEGRATED MANUFACTURING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	This course aims to acquaint the	Students will develop an understanding of
	students with principles, concepts	CAD systems and graphical modeling.
	and techniques that are essential in	
	Computer Integrated	
	Manufacturing.	
2	Understanding of the scope,	Students will get acquainted with data bases
	principles, norms, accountabilities	and numerical analysis related to CIM
	and bounds of contemporary	
	engineering practice in the specific	
	discipline	
3	Application of established	Students will have understanding of
	engineering methods to complex	Computer
	engineering problem solving	Aided Manufacturing (CAM) systems
4	Fluent application of engineering	Students will have an introduction to
	techniques, tools and resources	Computer Aided Process Planning (CAPP)
		Systems, Robotic Systems, Group
		Technology and Cellular Manufacturing

	Systems
5	Students will cultivate understanding about Automated Material Handling Systems,
	Automated Inspection System Automated Inspection System
6	

13.805: FACILITIES PLANNING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide understanding of the	At the end of the course students will be able
	overall facilities planning process	to Assess the value of facility planning on
		the strategy of a firm
2	To educate product, process and	Develop a systematic plant layout
	schedule design and their effects	
	on the facility layout	
3	To introduce concepts of material	Discuss the environmental and economical
	handling and safety in industries.	aspects in facilities planning.
4	To Create Awareness on the concepts	
	of designing of industrial layout	
5		
6		

13.806: FLEXIBLE MANUFACTURING METHODS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To give elementary ideas of	After completion of this course the students
	automation in industries	will be able to Employ automation in a
		manufacturing environment
2	To develop NC programming skills	Describe the fundamentals of NC technology
3	To provide an overview of features of	Design an automated system to meet defined
	robotics.	operational specifications
4	To Create Awareness on the concepts	Acquire knowledge of industrial robotics
	of simulation	and Flexible Manufacturing Systems
5		Identify and distinguish the different
		components and interfaces in a Flexible
		manufacturing System.
6		Able to know about the design of an FMS
		system

13.807: INDUSTRIAL SEMINAR COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	The main objective of this course is	Acquire the basic skills to perform
	to provide experience in	literature survey and present papers
	presentations and to improve their	
	communication skills.	
2		Acquire communication skills
3		
4		
5		
6		

13.808: PROJECT, VIVA-VOCE AND INDUSTRIAL VISIT COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To do a detailed study on a selected	Acquire the basic skills to perform
	topic based on current journals or	literature survey and present papers
	published papers.	
2	To impart the ability to perform as	Acquire communication skills and improve
	an individual as well as a team	their leadership quality as well as the ability
	member in completing a project	to work in groups.
	work.	
3		
4		
5		
6		

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S6

MECHANICAL

13.601: METROLOGY & INSTRUMENTATION COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To understand the basic principles of	To know about quality control and quality
	measurements.	assurances.
2	To learn the various linear and	To design a sensors and transducers used
	angular measuring equipments, their	for measurements.
	principle of operation and	
	applications.	
3	To learn about various methods of	To understand the importance of quality in
	measuring Mechanical parameters.	engineering products.
4		
5		
6		

13.602: DYNAMICS OF MACHINERY COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To impart knowledge on force	Develop the design and practical problem
	analysis of machinery,	solving skills in the area of mechanisms
2	To impart knowledge on	The students will be able to perform
	balancing of rotating and	dynamic force analysis
	reciprocating masses	
3	To impart knowledge on	The students will be able to design fly
	Gyroscopes, Energy fluctuation in	wheels
	Machines.	
4	To introduce the fundamentals	The students will be able to design
	in vibration, vibration analysis	governors.
	of single degree of freedom	The students will be able to analyze
	systems.	gyroscopic effect in various real world
		problems
5	To understand the physical	The students will be able to perform
	significance and design of vibration	dynamic balancing of rotating as well as
	systems with desired conditions	reciprocating parts of machines.
6		Understand the basics of vibration
		and apply the concepts in design

	problems of mechanisms.

13.603: COMPUTER AIDED DESIGN COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To equip students with fundamentals	Students successfully completing this course
	of computer aided design and to	are expected to have basic knowledge in
	provide elementary algorithms in	computer aided design, capability to
	computer graphics and finite element	prepare fundamental graphics algorithms
	analysis for basic engineering	and solve basic structural problems using
	problems	finite element method.
2	To introduce the student to the basic	Be able to use a commercial CAD/CAM
	tools of computer-aided design	software package as an engineering tool
	(CAD) and computer-aided	
	manufacturing (CAM).	
3	To expose the student to	Integrate the role of graphic communication
	contemporary computer design tools	in the engineering design process
	for aerospace and mechanical	
	engineers.	
4	To prepare the student to be an	Generate and interpret engineering
	effective user of a CAD/CAM system.	technical drawings of parts and assemblies
		according to engineering design standards.
5		Use CAD software to generate a computer

	model and technical drawing for a simple, well-defined part or assembly.
6	

13.604: HEAT AND MASS TRANSFER COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To introduce a basic study of the	Understand the basic laws of heat transfer.
	phenomena of heat and mass	
	transfer, to develop methodologies	
	for solving a wide variety of practical	
	engineering problems,	
2	To apply analytical and numerical	Apply principles of heat and mass transfer
	methods to solve conduction	to basic engineering systems
	problems.	
3	To combine thermodynamics and	Demonstrate general knowledge of heat
	fluid mechanics principles to analyze	transfer [conduction, convection, radiation],
	heat convection processes.	and general knowledge of mass transfer
		[molecular diffusion, convection].
4	To provide useful information	Analyse the performance and design of heat
	concerning the performance and	exchangers.
	design complex heat transfer	
	I	l l

	applications, such as heat exchangers	
	and fins	
5	To integrate radiation aspects into	Design heat and mass transfer processes and
	real-world global heat transfer	equipment
	problems.	
6		

13.605: DESIGN OF MACHINE ELEMENTS I COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide basic knowledge on the	demonstrate the fundamentals of stress
	design considerations and	analysis and theories of failure in the design
	methodology of various machine	of machine components.
	elements.	
2	At the end of this course, students will	make proper assumptions with respect to
	be able to formulate and analyze	material, factor of safety, static and
	stresses and strains in machine	dynamic loads for various machine
	elements and structures in 3-D	components.
	subjected to various loads	
3	At the end of this course, students will	Be able to analyze the stress and strain on
	be able to do tolerance analysis and	mechanical components; and understand,
	specify appropriate tolerances for	identify and quantify failure modes for
	machine design applications	mechanical parts
4	At the end of this course, students will	Demonstrate knowledge on basic machine
	be able to apply multidimensional	elements used in machine design; design
	static failure criteria in the analysis	machine elements to withstand the loads
	and design of mechanical components	and deformations for a given application,
		while considering additional specifications.

5	To develop an ability to design a system, component, or process to meet desired needs within realistic constraints.	Be able to approach a design problem successfully, taking decisions when there is not a unique answer.
6	Constraints.	Be proficient in the use of software for analysis and design.

13.606: NEW ENERGY SYSTEMS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To provide an overview of various	To explain the use of newer energy sources
	energy sources and its applications.	and their applications.
2	To aware about the need of newer	To design and develop various bio-gas
	energy sources to meet the extending	plants
	demands.	
3	To understand the theories and	To understand the various practical fuel
	principles behind various energy	cells
	systems.	
4		
5		
6		

13.607: COMPUTER AIDED MODELLING & ANALYSIS LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To train the students in Solid	At the end of the course, students shall be
	Modelling and Assembly of machine	able to understand various phases in
	parts.	engineering design process through
		modelling, assembly and finite element
		analysis.
2	To practice finite element approach	
	in the design of engineering systems.	
3		
4		
5		
6		

13.608: MACHINE TOOLS LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To acquaint with milling machines,	At the end of the course, the students will be
	grinding machines and drilling	familiar with the various operations using
	machines and to impart training on	milling machines, grinding machines,
	these machines.	drilling machines and CNC machines.
2	To acquaint with CNC machines and	Students will be able to develop practical
	to impart training on these machines.	knowledge in advanced machine tools like
		Shapping machine, Milling machine etc
3	To introduce the students to various	Students will be able to apply fundamental
	welding techniques.	knowledge and principles in material
		removal processes
4		Ability to develop fundamental knowledge
		in indexing process for manufacturing gears
		and cutting slots
5		Students will create models using Milling,
		Shapping and Slotting processes as per the
		design
6		

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S4

MECHANICAL

MA202: PROBABILITY DISTRIBUTIONS, TRANSFORMS AND NUMERICAL METHODS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Providing students with a formal	Develop problem-solving techniques needed to
	treatment of probability theory.	accurately calculate probabilities.
2	Equipping students with essential tools	Apply selected probability distributions to
	for statistical analyses at the graduate	solve problems.
	level.	
3	The goal is to provide the basic	Apply problem-solving techniques to solving
	understanding of the derivation	real-world events.
	analysis and use of these numerical	
	methods along with the rudimentary	
	understanding of finite precision	
	arithmetic.	
4	Apply the appropriate numerical	Be aware of the use of numerical methods in
	techniques for problems	modern scientific computing. Be familiar with
	T	finite precision computation. Be familiar with
		innic precision computation. De familial with

	numerical solutions of nonlinear equations in a
	single variable.
5	Be familiar with numerical interpolation and
	approximation of functions. Be familiar with
	numerical integration and differentiation
6	Be familiar with numerical solution of ordinary
	differential equations. Be familiar with
	calculation and interpretation of errors in
	numerical methods.

ME202: ADVANCED MECHANICS OF SOLIDS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To impart concepts of stress and	At the end of the course students will be able
	strain analyses in a solid.	to
		Apply concepts of stress and strain analyses
		in solids.
2	To study the methodologies in theory	Use the procedures in theory of elasticity at
	of elasticity at a basic level.	a basic level.
3	To acquaint with the solution of	Solve general bending problems.
	advanced bending problems.	
4	4. To get familiar with energy	Apply energy methods in structural
	methods for solving structural	mechanics problems
	mechanics problems.	
5		
6		

ME204: THERMAL ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
N		Course Outcomes
0.		On completion of course the
		students will be able to:
1	To acquire knowledge on the working	Integrate the concepts, laws and methodolo
	of steam turbines, IC engines and gas	gies from the course in thermodynamics
	turbines	into analysis of cyclic processes
2	To introduce the combustion process	To apply the thermodynamic concepts into
	in IC engines	various thermal application like IC
		engines, Steam Turbines, Compressors.
3	To understand air pollution from IC	The students will be able to design I. C.
	engines and its remedies.	Engines depending upon the requirements.
4	Be in a position to check the	They also will be able to do final year
	feasibility of proposed processes and	project on such highly demanding subject
	cycles using the ideas of second law of	area
	thermodynamics and entropy.	
5	Have the understanding of basic	It also provides students a feel for how
	principles of heat transfer and related	thermal sciences are applied in engineering
	simple problems	practice.

ME206: FLUID MACHINERY COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To introduce students, the	Knowledge on basic concepts of fluid
	fundamental concepts related to the	properties.
	mechanics of fluids.	
2	To understand the basic principles of	Analyze flow problems associated with
	fluid machines and devices.	statics, kinematics and dynamics of fluids.
3	To apply acquired knowledge on real	Use Euler's and Bernoulli's equations and
	life problems.	the conservation of mass to determine
		velocities, pressures, and accelerations for
		incompressible and inviscid fluids.
4	To analyze existing fluid systems and	Understand the concepts of viscous
	design new fluid systems.	boundary layers and the momentum
		integral.
5		Design and analyze fluid devices such as
		water turbines and pumps.
6		Understand and rectify problems faced in
		practical cases of engineering applications.

ME220: MANUFACTURING TECHNOLOGY COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To give an exposure to different	Acquire knowledge of various casting
	techniques of casting and molds	processes and technology related to them is
	required.	achieved
2	To provide an exposure to different	Understand the rolling passes required for
	rolling processes and different rolled	getting required shapes of rolled products is
	products	achieved. Mathematical and physical
		description of the rolling process and forge
		requirement will be obtained.
3	To familiarize with different forging	Discuss Important aspects of forging
	methods, cautions to be adopted in	techniques
	die design.	
4	To give an introduction to various	Discuss sheet metal working processes and
	work and tool holding devices used	their applications to produce various shapes
	in manufacturing.	and products is obtained.
5	To introduce to the bending,	Acquire knowledge of problems faced in
	shearing and drawing processes of	welding and ways to solve them is obtained.
	sheet metal working and allied	

	machines,	
6	To give an understanding of welding	Also conventional and special welding
	metallurgy and weldability and to	techniques used in industry will be
	introduce various metal joining	introduced.
	techniques.	

HS200: BUSINESS ECONOMICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To familiarize the prospective	Make investment decisions based on capital
	engineers with elementary Principles	budgeting methods in alignment with
	of Economics and Business	micro economic theories.
	Economics.	
2	To acquaint the students with tools	Make investment decisions based on capital
	and techniques that are useful in	budgeting methods in alignment with macro
	their profession in Business Decision	economic theories.
	Making which will enhance their	
	employability;	
3	To apply business analysis to the	Analyse the profitability of the firm,
	"firm" under different market	economy of operation.
	conditions.	
4	To apply economic models to	Determination of price under various
	examine current economic scenario	market situations with good grasp on the
	and evaluate policy options for	effect of trade cycles in business.
	addressing economic issues.	
5		Gain knowledge of elementary accounting
		concepts used for preparing balance sheet

	and
	interpretation of balance sheet.
6	

ME232: THERMAL ENGINEERING LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To study the various types IC	Determine the efficiency and plot the
	engines and their parts	characteristic curves of different types of
		Internal Combustion engines, compressors
		and blowers
2	To conduct the performance test on	Conduct experiments for the determination
	IC engines, compressors and blowers	of viscosity, calorific value etc of petroleum
		products
3	To familiarize equipment used for	Compute the property of fuels and
	measuring viscosity, flash and fire	lubricating oils using suitable tests.
	point and Calorific value of	
	petroleum products	
4	To provide knowledge on testing of	Demonstrate the performance of internal
	properties of fuels and lubricating	combustion engines and air compressors.
	oils	
5	To demonstrate and conduct	Interpret the emission characteristics of
	experiments, interpret and analyze	internal combustion engines.
	data and report results of IC Engine	

	testing	
6		

ME230: FLUID MECHANICS & MACHINES LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To demonstrate the applications of	Discuss physical basis of Bernoulli's
	the basic fluid mechanics and	equation, and apply it in flow measurement
	hydraulic machines and to provide a	(orifice, Nozzle and Venturi meter), and to a
	more intuitive and physical	variety of problems
	understanding of the theory.	
2	To provide practical knowledge in	Determine the efficiency and plot the
	verification of principles of fluid	characteristic curves of different types of
	flow.	pumps and turbines.
3	To impart knowledge in measuring	To provide the students with a solid
	pressure, discharge and velocity of	foundation in fluid flow principles.
	fluid flow.	
4	To understand Major and Minor	To provide the students knowledge in
	Losses.	calculating performance analysis in turbines
		and pumps and can be used in power plants.
5	To gain knowledge in performance	Students can able to understand to analyze
	testing of Hydraulic Turbines and	practical problems in all power plants and

	Hydraulic Pumps at constant speed	chemical industries.
	and Head.	
6		Conduct experiments (in teams) in pipe
		flows and open-channel flows and
		interpreting data from model studies to
		prototype cases.
7		Analyze a variety of practical fluid-flow
		devices and utilize fluid mechanics
		principles in design.
8		Given the required flow rate and pressure
		rise, select the proper pump to optimize the
		pumping efficiency.

COURSE OBJECTIVES AND COURSE OUTCOMES FOR S1

MECHANICAL

MA 102 - DIFFERENTIAL EQUATIONS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To put it briefly, the point of this	Distinguish between linear, partial and
	class is to take your existing	ordinary differential equations. State the
	knowledge of calculus and apply it	basic existence theorem for 1st order ODE's
	towards the construction and	and use the theorem to determine a solution
	solution of mathematical models in	interval
	the form of differential equations.	
2	Solve non-homogeneous linear	Recognize and solve a non homogeneous
	equations with constant coefficients	differential equation. Find particular
	using the methods of undetermined	solutions to initial value problems.
	coefficients and variation of	
	parameters.	
3	Introduce the Fourier series and its	Find the Fourier series representation of a
	application to the solution of partial	function of one variable.
	differential equation.	

4	To provide the student with the	Knowledge in the Technic, methodology of
	concept and the understanding of	solving Partial Differential Equations. A
	basics in Partial Differential	basic understanding in the Transforms
	Equations.	which are useful in solving engineering
		problems.
5	This course introduces ideas of wave	At the end of the course students will have
	equation and heat equation which	acquired basic knowledge of differential
	are widely used in the 61 modeling	equations and methods of solving them and
	and analysis of a wide range of	their use in analyzing typical mechanical or
	physical phenomena and has got	electrical systems.
	applications across all branches of	
	engineering.	
6		

CY 100: ENGINEERING CHEMISTRY COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To acquire knowledge about	Develop innovative methods to produce soft
	desalination of brackish water and	water for industrial use and potable water
	treatment of municipal water.	at cheaper cost.
2	To gain the knowledge of conducting	Substitute metals with conducting polymers
	polymers, bio-degradable polymers	and also produce cheaper biodegradable
	and fibre reinforced plastics.	polymers to reduce environmental pollution.
		Design economically and new methods of
		synthesis nano materials.
	To learn significance of green	Have the knowledge of converting solar
	chemistry and green synthesis.	energy into most needy electrical.
4	To understand mechanism of	Apply their knowledge for protection of
	corrosion and preventive methods.	different metals from corrosion. To prevents
		the monuments from getting corroded.
5	To have an idea and knowledge	Recent trends in electrochemical energy
	about the Chemistry of Fuels.	storage devices.
6	To study different types of	Learn how to use different spectroscopy
	spectroscopy.	techniques for analysis purpose of simple
		molecules.

ME 102: ENGINEERING GRAPHICS COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Increase ability to communicate with	To hand letter will improve.
	people.	
2	Learn to sketch and take field	To perform basic sketching techniques will
	dimensions.	improve.
3	Learn to take data and transform it	To draw orthographic projections and
	into graphic drawings.	sections.
4	Learn basic Auto Cad skills.	To use architectural and engineering scales
		will increase.
5	Learn basic engineering drawing	To produce engineered drawings will
	formats	improve
6	Prepare the student for future	To convert sketches to engineered drawings
	Engineering positions	will increase.

BE 103: DESIGN AND ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To excite the student on creative	To appreciate different elements involved in
	design and its significance	design and to apply them when they called
		for.
2	To make the student aware of the	Aware of product centred and user centred
	processes involved in design	aspects that makes in the design process.
3	To make the student understand the	To be aware of different stages in design
	interesting interaction of various	process and results of incorporating other
	segments of humanities, sciences and	fields with engineering stream
	engineering in the evolution of a	
	design	
4	To get an exposure as to how to	Understand different stages in
	engineer a design.	manufacturing of a designed product
5		
6		

CE 100: BASICS OF CIVIL ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To inculcate the essentials of civil	The students will be able to illustrate the
	engineering field to the students of all	fundamental aspects of civil engineering
	branches	
2	To provide the students an illustration	The students should able to plan a building
	of the significance of the civil	
	engineeringprofessionsatisfying	
	societal needs.	
3		Students will be able to explain about
		surveying for making horizontal and vertical
		measurements.
4		They will able to illustrate the uses of various
		building materials and construction of different
		components of a building.
5		
6		

EE 100: BASICS OF ELECTRICAL ENGINEERING COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To impart a basic knowledge in	Gain preliminary knowledge in basic
	Electrical Engineering with an	concepts of Electrical Engineering.
	understanding of fundamental	
	concepts.	
2	To impart the basic knowledge about	Discuss the working of various dc and ac
	the Electric and Magnetic circuits.	machines
	To inculcate the understanding	To predict the behavior of any electrical and
	about the AC fundamentals.	magnetic circuits.
4	To understand the working of	To identify the type of electrical machine
	various Electrical Machines.	used for that particular application.
5		To wire any circuit depending upon the
		requirement.
6		Understand working principle of various
		analogue electrical measuring instruments.

CY 110: ENGINEERING CHEMISTRY LAB COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To make students familiarize with	To equip the students to apply the
	the practical aspects of volumetric	knowledge of Chemistry and take up
	analysis of water samples ad	Chemistry related topics as parts of their
	determine the parameters like	project works during higher semester of the
	alkalinity, chlorides and hardness.	course.
2	To improve the knowledge of	To impart sound knowledge in the different
	different types of titrations used in	fields of theoretical chemistry so as to apply
	volumetric analysis	it to the problems in engineering field. (b)
		To develop analytical capabilities of
		students so that they can characterize,
		transform and use materials in engineering
		and apply knowledge gained in solving
		related engineering problems
3	To make students develop in terms	To develop abilities and skills that are
	of practical skills required for	relevant to the study and practice of
	analytical projects.	Chemistry.
4	To study flash and fire point	To familiarize the students with different
		application oriented topics like new

	generation engineering material different instrumental methods etc.
5	To enable the students to acquire the knowledge in the concepts of chemistry for engineering applications.
6	

EE 110 ELECTRICAL ENGINEERING WORKSHOP COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	Study and practice on electric	Draw and practice simple house wiring and
	circuits	testing methods
2	To develop skills leading to	Develop practical workshop skills in the
	achievement to connect basic	students.
	electrical instruments and devices	
3	To develop knowledge of electrical	Grasp the applications of workshop
	wiring and electronic circuits.	equipment, wiring accessories etc
4	Various technical facilities used by	Physical realization of the range of discrete
	electricians, wiring regulations, types	and integrated semiconductor devices
	of cables and electric accessories	
	including switches, lamps, sockets	
	etc.	
5		Knowledge of protective devices in electric
		circuits like fuse, ELCB, MCB etc.
6		
		1

CE110 CIVIL ENGINEERING WORKSHOP COURSE

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the
		students will be able to:
1	To inculcate the essentials of civil	The ability to practice civil engineering
	engineering field to the students of	using up-to-date techniques, skills, and tools
	all branches.	as a result of life-long learning ability to
		design and conduct experiments
2	To provide the students an	An ability to design a system or component
	illustration of the significance of the	to satisfy stated or code requirements of
	civil engineering profession satisfying	Civil Engineering.
	societal needs.	
3	To develop awareness about the	The students will be able to illustrate the
	instruments used in civil engineering	fundamental aspects of civil engineering
	field work.	
4	•	The students should able to plan a building